Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 37(11): 2086-92, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20556604

ABSTRACT

PURPOSE: To validate the ultrafast assessment of left ventricular (LV) dyssynchrony by phase analysis using high-speed nuclear myocardial perfusion imaging (MPI) on a new gamma camera with cadmium-zinc-telluride (CZT) solid-state detector technology. METHODS: In 46 patients rest MPI with 960 MBq (99m)Tc-tetrofosmin was acquired on a dual-head detector SPECT camera (Ventri, GE Healthcare) and an ultrafast CZT camera (Discovery NM 530c, GE Healthcare) with acquisition times of 15 and 5 min, respectively. LV dyssynchrony was assessed using the Emory Cardiac Toolbox with established values for histogram bandwidth (male <62.4°; female <49.7°) and standard deviations (male <24.4°; female <22.1°) as the gold standard. Evaluating CZT scan times of 0.5, 1, 2, 3 and 5 min (list mode) in 16 patients revealed the preferred scan time to be 5 min, which was then applied in all 46 patients. Intraclass correlation and the level of agreement in dyssynchrony detection between the CZT and Ventri cameras were assessed. RESULTS: In LV dyssynchrony the mean histogram bandwidths with the CZT camera (n = 8) and the Ventri camera (n = 9) were 123.3 ± 50.6° and 130.2 ± 43.2° (p not significant) and 42.4 ± 13.6° vs. 43.2 ± 12.7° (p not significant). Normal bandwidths and SD obtained with the CZT camera (35.9 ± 7.7°, 12.6 ± 3.5°) and the Ventri camera (34.8 ± 6.6°, 11.1 ± 2.1°, both p not significant) excluded dyssynchrony in 38 and 37 patients, respectively. Intraclass correlation and the level of agreement between the CZT camera with a 5-min scan time and the Ventri camera were 0.94 (p < 0.001, SEE 14.4) and 96% for histogram bandwidth and 0.96 (p < 0.001, SEE 3.9) and 98% for SD. CONCLUSION: This ultrafast CZT camera allows accurate assessment of LV dyssynchrony with a scan time of only 5 min, facilitating repeat measurements which would potentially be helpful for parameter optimization for cardiac resynchronization therapy.


Subject(s)
Gamma Cameras , Myocardial Perfusion Imaging/instrumentation , Ventricular Dysfunction, Left/diagnostic imaging , Aged , Cadmium , Female , Humans , Linear Models , Male , Reproducibility of Results , Retrospective Studies , Tellurium , Time Factors , Tomography, Emission-Computed, Single-Photon , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...