Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(25): 7623-7628, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38860722

ABSTRACT

Hexagonal boron nitride (h-BN) hosts pure single-photon emitters that have shown evidence of optically detected electronic spin dynamics. However, the electrical and chemical structures of these optically addressable spins are unknown, and the nature of their spin-optical interactions remains mysterious. Here, we use time-domain optical and microwave experiments to characterize a single emitter in h-BN exhibiting room temperature optically detected magnetic resonance. Using dynamical simulations, we constrain and quantify transition rates in the model, and we design optical control protocols that optimize the signal-to-noise ratio for spin readout. This constitutes a necessary step toward quantum control of spin states in h-BN.

2.
G3 (Bethesda) ; 9(12): 4183-4195, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31624138

ABSTRACT

Cell-fate decisions during development are controlled by densely interconnected gene regulatory networks (GRNs) consisting of many genes. Inferring and predictively modeling these GRNs is crucial for understanding development and other physiological processes. Gene circuits, coupled differential equations that represent gene product synthesis with a switch-like function, provide a biologically realistic framework for modeling the time evolution of gene expression. However, their use has been limited to smaller networks due to the computational expense of inferring model parameters from gene expression data using global non-linear optimization. Here we show that the switch-like nature of gene regulation can be exploited to break the gene circuit inference problem into two simpler optimization problems that are amenable to computationally efficient supervised learning techniques. We present FIGR (Fast Inference of Gene Regulation), a novel classification-based inference approach to determining gene circuit parameters. We demonstrate FIGR's effectiveness on synthetic data generated from random gene circuits of up to 50 genes as well as experimental data from the gap gene system of Drosophila melanogaster, a benchmark for inferring dynamical GRN models. FIGR is faster than global non-linear optimization by a factor of 600 and its computational complexity scales much better with GRN size. On a practical level, FIGR can accurately infer the biologically realistic gap gene network in under a minute on desktop-class hardware instead of requiring hours of parallel computing. We anticipate that FIGR would enable the inference of much larger biologically realistic GRNs than was possible before.


Subject(s)
Gene Expression Regulation , Gene Regulatory Networks , Models, Genetic , Animals , Drosophila melanogaster
SELECTION OF CITATIONS
SEARCH DETAIL
...