Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(36): eabq8227, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37683006

ABSTRACT

Atoms can form a molecule by sharing their electrons in binding orbitals. These electrons are entangled. Is there a way to break a molecular bond and obtain atoms in their ground state that are spatially separated and still entangled? Here, we show that it is possible to prepare these spatially separated, entangled atoms on femtosecond time scales from single oxygen molecules. The two neutral atoms are entangled in the magnetic quantum number of their valence electrons. In a time-delayed probe step, we use nonadiabatic tunneling, which is a magnetic quantum number-sensitive ionization mechanism. We find a fingerprint of entanglement in the measured ionization probability as a function of the angle between the light's quantization axis and the molecular axis. This establishes a platform for further experiments that harness the time resolution of strong-field experiments to investigate spatially separated, entangled atoms on femtosecond time scales.

2.
Phys Chem Chem Phys ; 24(43): 26458-26465, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36305893

ABSTRACT

X-Ray as well as electron diffraction are powerful tools for structure determination of molecules. Studies on randomly oriented molecules in the gas phase address cases in which molecular crystals cannot be generated or the interaction-free molecular structure is to be addressed. Such studies usually yield partial geometrical information, such as interatomic distances. Here, we present a complementary approach, which allows obtaining insight into the structure, handedness, and even detailed geometrical features of molecules in the gas phase. Our approach combines Coulomb explosion imaging, the information that is encoded in the molecular-frame diffraction pattern of core-shell photoelectrons and ab initio computations. Using a loop-like analysis scheme, we are able to deduce specific molecular coordinates with sensitivity even to the handedness of chiral molecules and the positions of individual atoms, e.g., protons.


Subject(s)
Electrons , Molecular Structure , Stereoisomerism , X-Rays
3.
Phys Chem Chem Phys ; 24(22): 13597-13604, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35621377

ABSTRACT

We report a joint experimental and theoretical study of the differential photoelectron circular dichroism (PECD) in inner-shell photoionization of uniaxially oriented trifluoromethyloxirane. By adjusting the photon energy of the circularly polarized synchrotron radiation, we address 1s-photoionization of the oxygen, different carbon, and all fluorine atoms. The photon energies were chosen such that in all cases electrons with a similar kinetic energy of about 11 eV are emitted. Employing coincident detection of electrons and fragment ions, we concentrate on identical molecular fragmentation channels for all of the electron-emitter scenarios. Thereby, we systematically examine the influence of the emission site of the photoelectron wave on the differential PECD. We observe large differences in the PECD signals. The present experimental results are supported by corresponding relaxed-core Hartree-Fock calculations.

4.
Phys Rev Lett ; 128(11): 113201, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35363023

ABSTRACT

The influence of the magnetic component of the driving electromagnetic field is often neglected when investigating light-matter interaction. We show that the magnetic component of the light field plays an important role in nonsequential double ionization, which serves as a powerful tool to investigate electron correlation. We investigate the magnetic-field effects in double ionization of xenon atoms driven by near-infrared ultrashort femtosecond laser pulses and find that the mean forward shift of the electron momentum distribution in light-propagation direction agrees well with the classical prediction, where no under-barrier or recollisional nondipole enhancement is observed. By extending classical trajectory Monte Carlo simulations beyond the dipole approximation, we reveal that double ionization proceeds via recollision-induced doubly excited states, followed by subsequent sequential over-barrier field ionization of the two electrons. In agreement with this model, the binding energies do not lead to an additional nondipole forward shift of the electrons. Our findings provide a new method to study electron correlation by exploiting the effect of the magnetic component of the electromagnetic field.

5.
Sci Adv ; 8(12): eabn7386, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35333574

ABSTRACT

The photoelectric effect describes the ejection of an electron upon absorption of one or several photons. The kinetic energy of this electron is determined by the photon energy reduced by the binding energy of the electron and, if strong laser fields are involved, by the ponderomotive potential in addition. It has therefore been widely taken for granted that for atoms and molecules, the photoelectron energy does not depend on the electron's emission direction, but theoretical studies have questioned this since 1990. Here, we provide experimental evidence that the energies of photoelectrons emitted against the light propagation direction are shifted toward higher values, while those electrons that are emitted along the light propagation direction are shifted to lower values. We attribute the energy shift to a nondipole contribution to the ponderomotive potential that is due to the interaction of the moving electrons with the incident photons.

6.
Phys Rev Lett ; 128(2): 023201, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35089761

ABSTRACT

We experimentally and theoretically investigate the influence of the magnetic component of an electromagnetic field on high-order above-threshold ionization of xenon atoms driven by ultrashort femtosecond laser pulses. The nondipole shift of the electron momentum distribution along the light-propagation direction for high energy electrons beyond the 2U_{p} classical cutoff is found to be vastly different from that below this cutoff, where U_{p} is the ponderomotive potential of the driving laser field. A local minimum structure in the momentum dependence of the nondipole shift above the cutoff is identified for the first time. With the help of classical and quantum-orbit analysis, we show that large-angle rescattering of the electrons strongly alters the partitioning of the photon momentum between electron and ion. The sensitivity of the observed nondipole shift to the electronic structure of the target atom is confirmed by three-dimensional time-dependent Schrödinger equation simulations for different model potentials. Our work paves the way toward understanding the physics of extreme light-matter interactions at long wavelengths and high electron kinetic energies.

7.
Nat Commun ; 12(1): 6657, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34789736

ABSTRACT

How long does it take to emit an electron from an atom? This question has intrigued scientists for decades. As such emission times are in the attosecond regime, the advent of attosecond metrology using ultrashort and intense lasers has re-triggered strong interest on the topic from an experimental standpoint. Here, we present an approach to measure such emission delays, which does not require attosecond light pulses, and works without the presence of superimposed infrared laser fields. We instead extract the emission delay from the interference pattern generated as the emitted photoelectron is diffracted by the parent ion's potential. Targeting core electrons in CO, we measured a 2d map of photoelectron emission delays in the molecular frame over a wide range of electron energies. The emission times depend drastically on the photoelectrons' emission directions in the molecular frame and exhibit characteristic changes along the shape resonance of the molecule.

8.
Phys Chem Chem Phys ; 23(32): 17248-17258, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34346440

ABSTRACT

The photoelectron circular dichroism (PECD) of the O 1s-photoelectrons of trifluoromethyloxirane (TFMOx) is studied experimentally and theoretically for different photoelectron kinetic energies. The experiments were performed employing circularly polarized synchrotron radiation and coincident electron and fragment ion detection using cold target recoil ion momentum spectroscopy. The corresponding calculations were performed by means of the single center method within the relaxed-core Hartree-Fock approximation. We concentrate on the energy dependence of the differential PECD of uniaxially oriented TFMOx molecules, which is accessible through the employed coincident detection. We also compare the results for the differential PECD of TFMOx to those obtained for the equivalent fragmentation channel and similar photoelectron kinetic energy of methyloxirane (MOx), studied in our previous work. Thereby, we investigate the influence of the substitution of the methyl group by the trifluoromethyl group at the chiral center on the molecular chiral response. Finally, the presently obtained angular distribution parameters are compared to those available in the literature.

9.
Phys Rev Lett ; 125(16): 163201, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33124863

ABSTRACT

We report on a multiparticle coincidence experiment performed at the European X-ray Free-Electron Laser at the Small Quantum Systems instrument using a COLTRIMS reaction microscope. By measuring two ions and two electrons in coincidence, we investigate double core-hole generation in O_{2} molecules in the gas phase. Single-site and two-site double core holes have been identified and their molecular-frame electron angular distributions have been obtained for a breakup of the oxygen molecule into two doubly charged ions. The measured distributions are compared to results of calculations performed within the frozen- and relaxed-core Hartree-Fock approximations.

10.
Science ; 370(6514): 339-341, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33060359

ABSTRACT

Photoionization is one of the fundamental light-matter interaction processes in which the absorption of a photon launches the escape of an electron. The time scale of this process poses many open questions. Experiments have found time delays in the attosecond (10-18 seconds) domain between electron ejection from different orbitals, from different electronic bands, or in different directions. Here, we demonstrate that, across a molecular orbital, the electron is not launched at the same time. Rather, the birth time depends on the travel time of the photon across the molecule, which is 247 zeptoseconds (1 zeptosecond = 10-21 seconds) for the average bond length of molecular hydrogen. Using an electron interferometric technique, we resolve this birth time delay between electron emission from the two centers of the hydrogen molecule.

11.
J Phys Chem A ; 123(30): 6491-6495, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31329435

ABSTRACT

The investigation of the photoelectron circular dichroism (PECD) in the strong field regime (800 nm, 6.9 × 1013 W/cm2) on methyloxirane (MOX) reveals a flip of the sign of PECD between different fragmentation channels. This finding is of great importance for future experiments and applications in chemistry or pharmacy using PECD in the strong field regime as analysis method. We suggest that the observed sign change of PECD is not caused by ionization from different orbitals but by effectively selecting differently oriented nonisotropic subsamples of molecules via the fragmentation channel.

12.
J Vis Exp ; (126)2017 08 18.
Article in English | MEDLINE | ID: mdl-28872134

ABSTRACT

This article shows how the COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) or the "reaction microscope" technique can be used to distinguish between enantiomers (stereoisomers) of simple chiral species on the level of individual molecules. In this approach, a gaseous molecular jet of the sample expands into a vacuum chamber and intersects with femtosecond (fs) laser pulses. The high intensity of the pulses leads to fast multiple ionization, igniting a so-called Coulomb Explosion that produces several cationic (positively charged) fragments. An electrostatic field guides these cations onto time- and position-sensitive detectors. Similar to a time-of-flight mass spectrometer, the arrival time of each ion yields information on its mass. As a surplus, the electrostatic field is adjusted in a way that the emission direction and the kinetic energy after fragmentation lead to variations in the time-of-flight and in the impact position on the detector. Each ion impact creates an electronic signal in the detector; this signal is treated by high-frequency electronics and recorded event by event by a computer. The registered data correspond to the impact times and positions. With these data, the energy and the emission direction of each fragment can be calculated. These values are related to structural properties of the molecule under investigation, i.e. to the bond lengths and relative positions of the atoms, allowing to determine molecule by molecule the handedness of simple chiral species and other isomeric features.


Subject(s)
Hydrocarbons, Halogenated/chemistry , Mass Spectrometry/methods , Mass Spectrometry/instrumentation , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...