Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 4(2): 3812-3819, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-31459592

ABSTRACT

Graphene is a single layer of carbon atoms with a large surface-to-volume ratio, providing a large capacity gas molecule adsorption and a strong surface sensitivity. Chemical vapor deposition-grown graphene-based NO2 gas sensors typically have detection limits from 100 parts per billion (ppb) to a few parts per million (ppm), with response times over 1000 s. Numerous methods have been proposed to enhance the NO2 sensing ability of graphenes. Among them, surface decoration with metal particles and metal-oxide particles has demonstrated the potential to enhance the gas-sensing properties. Here, we show that the NO2 sensing of graphene can be also enhanced via decoration with monodisperse polymer beads. In dark conditions, the detection limit is improved from 1000 to 45 ppb after the application of polystyrene (PS) beads. With laser illumination, a detection limit of 0.5 ppb is determined. The enhanced gas sensing is due to surface plasmon polaritons excited by interference and charge transfer between the PS beads. This method opens an interesting route for the application of graphene in gas sensing.

2.
ACS Sens ; 4(9): 2546-2552, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31456397

ABSTRACT

SnSe2 is an anisotropic binary-layered material with rich physics, which could see it used for a variety of potential applications. Here, we investigate the gas-sensing properties of SnSe2 using first-principles calculations and verify predictions using a gas sensor made of few-layer SnSe2 grown by chemical vapor deposition. Theoretical simulations indicate that electrons transfer from SnSe2 to NO2, whereas the direction of charge transfer is the opposite for NH3. Notably, a flat molecular band appears around the Fermi energy after NO2 adsorption and the induced molecular band is close to the conduction band minimum. Moreover, compared with NH3, NO2 molecules adsorbed on SnSe2 have a lower adsorption energy and a higher charge transfer value. The dynamic-sensing responses of SnSe2 sensors confirm the theoretical predictions. The good match between the theoretical prediction and experimental demonstration suggests that the underlying sensing mechanism is related to the charge transfer and induced flat band. Our results provide a guideline for designing high-performance gas sensors based on SnSe2.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Gases/analysis , Limit of Detection , Tin Compounds/chemistry , Electron Transport , Models, Molecular , Molecular Conformation
3.
ACS Appl Mater Interfaces ; 11(8): 8202-8209, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30729782

ABSTRACT

PtS2 is a newly developed group 10 2D layered material with high carrier mobility, wide band gap tunability, strongly bound excitons, symmetrical metallic and magnetic edge states, and ambient stability, making it attractive in nanoelectronic, optoelectronic, and spintronic fields. To the aim of application, a large-scale synthesis is necessary. For transition-metal dichalcogenide (TMD) compounds, a thermally assisted conversion method has been widely used to fabricate wafer-scale thin films. However, PtS2 cannot be easily synthesized using the method, as the tetragonal PtS phase is more stable. Here, we use a specified quartz part to locally increase the vapor pressure of sulfur in a chemical vapor deposition furnace and successfully extend this method for the synthesis of PtS2 thin films in a scalable and controllable manner. Moreover, the PtS and PtS2 phases can be interchangeably converted through a proposed strategy. Field-effect transistor characterization and photocurrent measurements suggest that PtS2 is an ambipolar semiconductor with a narrow band gap. Moreover, PtS2 also shows excellent gas-sensing performance with a detection limit of ∼0.4 ppb for NO2. Our work presents a relatively simple way of synthesizing PtS2 thin films and demonstrates their promise for high-performance ultrasensitive gas sensing, broadband optoelectronics, and nanoelectronics in a scalable manner. Furthermore, the proposed strategy is applicable for making other PtX2 compounds and TMDs which are compatible with modern silicon technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...