Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
mBio ; 6(3): e00022-15, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25991678

ABSTRACT

UNLABELLED: The giant panda evolved from omnivorous bears. It lives on a bamboo-dominated diet at present, but it still retains a typical carnivorous digestive system and is genetically deficient in cellulose-digesting enzymes. To find out whether this endangered mammalian species, like other herbivores, has successfully developed a gut microbiota adapted to its fiber-rich diet, we conducted a 16S rRNA gene-based large-scale structural profiling of the giant panda fecal microbiota. Forty-five captive individuals were sampled in spring, summer, and late autumn within 1 year. Significant intraindividual variations in the diversity and structure of gut microbiota across seasons were observed in this population, which were even greater than the variations between individuals. Compared with published data sets involving 124 gut microbiota profiles from 54 mammalian species, these giant pandas, together with 9 captive and 7 wild individuals investigated previously, showed extremely low gut microbiota diversity and an overall structure that diverged from those of nonpanda herbivores but converged with those of carnivorous and omnivorous bears. The giant panda did not harbor putative cellulose-degrading phylotypes such as Ruminococcaceae and Bacteroides bacteria that are typically enriched in other herbivores, but instead, its microbiota was dominated by Escherichia/Shigella and Streptococcus bacteria. Members of the class Clostridia were common and abundant in the giant panda gut microbiota, but most of the members present were absent in other herbivores and were not phylogenetically related with known cellulolytic lineages. Therefore, the giant panda appears not to have evolved a gut microbiota compatible with its newly adopted diet, which may adversely influence the coevolutionary fitness of this herbivore. IMPORTANCE: The giant panda, an endangered mammalian species endemic to western China, is well known for its unique bamboo diet. Unlike other herbivores that have successfully evolved anatomically specialized digestive systems to efficiently deconstruct fibrous plant matter, the giant panda still retains a gastrointestinal tract typical of carnivores. We characterized the fecal bacterial communities from a giant panda population to determine whether this animal relies on its symbiotic gut microbiota to cope with the complex carbohydrates that dominate its diet, as is common in other herbivores. We found that the giant panda gut microbiota is low in diversity and highly variable across seasons. It also shows an overall composition typical of bears and entirely differentiated from other herbivores, with low levels of putative cellulose-digesting bacteria. The gut microbiota of this herbivore, therefore, may not have well adapted to its highly fibrous diet, suggesting a potential link with its poor digestive efficiency.


Subject(s)
Feces/microbiology , Gastrointestinal Microbiome , Ursidae/microbiology , Animals , Animals, Zoo , China , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Seasons , Sequence Analysis, DNA
2.
Yi Chuan Xue Bao ; 29(9): 782-6, 2002 Sep.
Article in Chinese | MEDLINE | ID: mdl-12561224

ABSTRACT

Activin, which is included in the transforming growth factor-beta (TGF beta) superfamily of proteins and receptors, is known to have broad-ranging effects in the creatures. The mature peptide of beta A subunit of this gene, one of the most highly conserved sequence, can elevate the basal secretion of follicle-stimulating hormone (FSH) in the pituitary and FSH is pivotal to organism's reproduction. Reproduction block is one of the main reasons which cause giant panda to extinct. The sequence of Activin beta A subunit gene mature peptides has been successfully amplified from giant panda, red panda and malayan sun bear's genomic DNA by using polymerase chain reaction (PCR) with a pair of degenerate primers. The PCR products were cloned into the vector pBlueScript+ of Esherichia coli. Sequence analysis of Activin beta A subunit gene mature peptides shows that the length of this gene segment is the same (359 bp) and there is no intron in all three species. The sequence encodes a peptide of 119 amino acid residues. The homology comparison demonstrates 93.9% DNA homology and 99% homology in amino acid among these three species. Both GenBank blast search result and restriction enzyme map reveal that the sequences of Activin beta A subunit gene mature peptides of different species are highly conserved during the evolution process. Phylogeny analysis is performed with PHYLIP software package. A consistent phylogeny tree has been drawn with three different methods. The software analysis outcome accords with the academic view that giant panda has a closer relationship to the malayan sun bear than the red panda. Giant panda should be grouped into the bear family (Uersidae) with the malayan sun bear. As to the red panda, it would be better that this animal be grouped into the unique family (red panda family) because of great difference between the red panda and the bears (Uersidae).


Subject(s)
Carnivora/genetics , Inhibin-beta Subunits/genetics , Phylogeny , Ursidae/genetics , Amino Acid Sequence , Animals , Carnivora/classification , Cloning, Molecular , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Restriction Enzymes/metabolism , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Ursidae/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...