Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
J Sci Food Agric ; 103(5): 2357-2366, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36710495

ABSTRACT

BACKGROUND: Reasonable nitrogen (N) supply is critical for increasing rice yield while improving grain quality and nitrogen use efficiency (NUE). However, the trade-off relationship between yield, quality and NUE of rice under N management has not been well understood enough. In the present study, a 2-year field experiment was conducted to identify optimal N fertilizer management practices that resulted in high-yield, high-quality and high-NUE by using the technique for order preference by similarity to an ideal solution (TOPSIS) with entropy weight (EW) method. RESULTS: All the parameters of rice yield, quality and efficiency were remarkably affected by fertilization treatments. Compared with farmer's fertilization practice (FFP), optimizing N fertilizer treatment (OPT) and substituting 20% of N fertilizer with pig manure based on OPT treatment (OPTM) increased grain yield (2.87-6.62%) by maintaining higher 1000-grain weight and filled grains rate. The agronomic NUE (AE) and N partial factor productivity (PFP) under OPT and OPTM treatment were also remarkably increased by 32.81-43.01% and 28.59-33.28% with respect to the value under FFP treatment, respectively. Meanwhile, OPT and OPTM significantly improved the milling quality of rice by increasing brown rice rate (0.71-1.17%) and head rice rate (1.34-2.31%). OPT and OPTM significantly improved appearance quality by decreasing chalkiness and eating quality by reducing amylose content in 2020. The TOPSIS with EW showed that rice comprehensive evaluation could be maintained at a high level under OPT and OPTM. CONCLUSION: OPT and OPTM were nutrient management modes of high-yield, high-quality and high-efficiency, and promising practice to improve rice comprehensive productivity. This strategy is also highly-consistent with the United Nations Sustainable Development Goals. © 2023 Society of Chemical Industry.


Subject(s)
Oryza , Animals , Swine , Nitrogen/analysis , Fertilizers/analysis , Agriculture/methods , Edible Grain/chemistry , Decision Support Techniques
2.
Front Plant Sci ; 13: 848464, 2022.
Article in English | MEDLINE | ID: mdl-35401629

ABSTRACT

Background and Aims: Climate warming has become an indisputable fact, and wheat is among the most heat-sensitive cereal crops. Heat stress during grain filling threatens global wheat production and food security. Here, we analyzed the physiological and proteomic changes by delayed sowing on the photosynthetic capacity of winter wheat leaves under heat stress. Our aim is to provide a new cultivation way for the heat stress resistance in wheat. Methods: Through 2 years field experiment and an open warming simulation system, we compared the changes in wheat grain weight, yield, photosynthetic rate, and chlorophyll fluorescence parameters under heat stress at late grain-filling stage during normal sowing and delayed sowing. At the same time, based on the iTRAQ proteomics, we compared the changes of differentially expressed proteins (DEPs) during the two sowing periods under high temperature stress. Key Results: In our study, compared with normal sowing, delayed sowing resulted in a significantly higher photosynthetic rate during the grain-filling stage under heat stress, as well as significantly increased grain weight and yield at maturity. The chlorophyll a fluorescence transient (OJIP) analysis showed that delayed sowing significantly reduced the J-step and I-step. Moreover, OJIP parameters, including RC/CSm, TRo/CSm, ETo/CSm, DIo/CSm and ΦPo, ψo, ΦEo, were significantly increased; DIo/CSm and ΦDo, were significantly reduced. GO biological process and KEGG pathway enrichment analyses showed that, among DEPs, proteins involved in photosynthetic electron transport were significantly increased and among photosynthetic metabolic pathways, we have observed upregulated proteins, such as PsbH, PsbR, and PetB. Conclusion: Physiological and proteomic analyses indicate delaying the sowing date of winter wheat reduced heat dissipation by enhancing the scavenging capacity of reactive oxygen species (ROS) in flag leaves, and ensuring energy transmission along the photosynthetic electron transport chain; this increased the distribution ratio of available energy in photochemical reactions and maintained a high photosynthetic system assimilation capacity, which supported a high photosynthetic rate. Hence, delayed sowing may represent a new cultivation strategy for promoting heat stress tolerance in winter wheat.

3.
J Sci Food Agric ; 102(1): 360-369, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34143446

ABSTRACT

BACKGROUND: Sowing date, seeding rate, and nitrogen (N) topdressing ratio have strong effects on grain yield (GY) and bread-making quality (BQ) in bread wheat. Simultaneous improvement in GY and BQ in bread wheat has long been a challenge due to the inverse relationship between GY and grain protein concentration (GPC). In this study, we investigated whether the GY and BQ of bread wheat sown on different dates could be improved simultaneously by optimizing the seeding rate and the N topdressing ratio. RESULTS: Delaying sowing beyond a certain period led to decreases in both GY and BQ. Optimizing the seeding rate and N topdressing ratio enhanced the N uptake during pre- and post-anthesis, as well as N remobilization during grain filling for all wheat plants sown on different dates, thereby increasing the GPC and the total N per grain (Ntot ). Consequently, grain protein composition was improved, resulting in an increased glutenin/gliadin ratio, sodium dodecyl sulfate-insoluble glutenin/total glutenin (i.e., glutenin polymerization index), and high-molecular-weight glutenin subunit/ low-molecular-weight glutenin subunit (HMW-GS/LMW-GS) ratio. Increased GPC and improved grain protein composition enhanced BQ. CONCLUSION: The mechanism underlying simultaneous improvement in GY and GPC as well as Ntot was the greater increase in N accumulation in grains per unit area relative to increases in GY, or total grain number per unit area. The GY and BQ can be improved simultaneously regardless of sowing date by optimizing the seeding rate and N topdressing ratio via enhanced N uptake and N remobilization into grains. © 2021 Society of Chemical Industry.


Subject(s)
Bread/analysis , Crop Production/methods , Nitrogen/metabolism , Seeds/metabolism , Triticum/growth & development , Seeds/chemistry , Seeds/growth & development , Time Factors , Triticum/chemistry , Triticum/metabolism
4.
Ying Yong Sheng Tai Xue Bao ; 32(1): 163-174, 2021 Jan.
Article in Chinese | MEDLINE | ID: mdl-33477224

ABSTRACT

To get an optimal irrigation regime and planting density for simultaneous improvement of grain yield (GY) and water use efficiency (WUE) in winter wheat, we examined the responses of 'Tainong 18' (with bigger ears) and 'Shannong 22' (with medium-sized ears) under four irrigation regimes, including 0, 45, 60, and 75 mm. Those two cultivars were planted at four densities: Tainong 18 at 135×104, 270×104, 405×104, and 540×104 plants·hm-2 and Shannong 22 at 90×104, 180×104, 270×104, and 360×104 plants·hm-2. The interactive effects of irrigation regimes and plant densities on GY, water consumption characteristics, and WUE were investigated. The results showed that GY, evapotranspiration, soil water consumption, and WUE were significantly affected by irrigation regime, plant density, and their interaction. The optimal irrigation regime was 45 mm for both cultivars, while the optimal plant density was 405×104 plants·hm-2 for Tainong 18 and 270×104 plants·hm-2 for Shannong 22, as indicated by the highest GY, the lowest ratio of soil evaporation to evapotranspiration after jointing, and higher WUE and the ratio of soil water consumption below 1 m to total soil water consumption. The rational combination of plant density and irrigation could reduce unnecessary water consumption and improve WUE.


Subject(s)
Triticum , Water , Agricultural Irrigation , Biomass , Edible Grain , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...