Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 15(12): 6347-6358, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38768294

ABSTRACT

Age-related macular degeneration (AMD) is a prominent cause of vision loss among the elderly, and the treatment options for dry AMD (dAMD) are severely limited. Lutein has a favorable effect on the treatment of dAMD. Algae oil, rich in docosahexaenoic acid (DHA), is considered an effective intervention for eye diseases. In this study, casein-mannose conjugates were prepared to form algal oil-in-water Pickering emulsions by ultrasound-assisted Maillard reaction. As the ultrasound time increased from 0 to 25 min, the droplet size decreased to 648.2 ± 21.18 nm, which substantially improved the stability of the Pickering emulsions. The retention of lutein in the Pickering emulsions under ultrasonic treatment for 20 min was significantly improved under different conditions. The simulated gastrointestinal digestion revealed that ultrasound-assisted Pickering emulsions are an effective method for improving the bioaccessibility of lutein (19.76%-53.34%). In vivo studies elucidated that the lutein-loaded Pickering emulsions could effectively alleviate retinal thinning induced by sodium iodate (NaIO3) in mice with dAMD. Mechanistically, lutein-loaded Pickering emulsions significantly reduced oxidative stress by decreasing the MDA level, increasing the SOD production, and reducing the retinal ROS production. These findings explored the protective effects of lutein-loaded Pickering emulsions on dAMD and offered promising prospects for the nutritional intervention of dAMD.


Subject(s)
Emulsions , Lutein , Macular Degeneration , Maillard Reaction , Animals , Emulsions/chemistry , Lutein/pharmacology , Lutein/chemistry , Lutein/administration & dosage , Mice , Male , Oxidative Stress/drug effects , Mice, Inbred C57BL , Humans , Disease Models, Animal
2.
Food Chem ; 442: 138474, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38245982

ABSTRACT

Fucoxanthin is a xanthophyll carotenoid that possesses potent antioxidant, anti-obesity, and anti-tumor properties. However, its limited solubility in water and susceptibility to degradation create challenges for its application. In this study, a microfluidic coaxial electrospinning technique was used to produce core-shell zein-gelatin nanofibers for encapsulating fucoxanthin, enhancing its bioavailability, and improving its stability. In comparison to uniaxially-loaded fucoxanthin nanofibers, the encapsulation efficiency of fucoxanthin reached 98.58 % at a core-shell flow rate ratio of 0.26:1, representing a 14.29 % improvement. The photostability of the nanofibers increased by 74.59 % after three days, UV stability increased by 38.82 % after 2 h, and temperature stability also significantly improved, demonstrating a protective effect under harsh environmental conditions (P < 0.05). Additionally, nanofibers effectively alleviated oleic acid-induced reactive oxygen species production and reduced fluorescence intensity by 54.76 %. MTT experiments indicated great biocompatibility of the nanofibers, effectively mitigating mitochondrial membrane potential polarization and lipid accumulation in HepG2 cells. Overall, the microfluidic coaxial electrospinning technique enables promising applications of fucoxanthin delivery in the food industry.


Subject(s)
Nanofibers , Microfluidics , Xanthophylls/pharmacology , Lipids
3.
Food Funct ; 15(3): 1323-1339, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38205590

ABSTRACT

The remarkable performance of fucoxanthin (FX) in antioxidant and weight loss applications has generated considerable interest. However, the application of fucoxanthin in the food and pharmaceutical industries is limited due to its highly unsaturated structure. This research aimed to investigate the synergistic mechanism of a unique Pickering emulsion gel stabilized by salmon byproduct protein (SP)-pectin (PE) aggregates and evaluate its ability to enhance the stability and bioavailability of FX. Various analytical techniques, including fluorescence spectroscopy, contact angle testing, turbidity analysis, and cryo-field scanning electron microscopy, were used to demonstrate that electrostatic and hydrophobic interactions between SP and PE contribute to the exceptional stability and wettability of the Pickering emulsion gels. Rheological analysis revealed that increasing the concentration of SP-PEs resulted in shear-thinning behavior, excellent thixotropic recovery performance, higher viscoelasticity, and good thermal stability of the Pickering emulsion gels stabilized by SP-PEs(SEGs). Furthermore, encapsulation of FX in the gels showed protected release under simulated oral and gastric conditions, with the subsequent controlled release in the intestine. Compared to free FX and the control group without PE (SEG-0), SEG-4 exhibited a 1.92-fold and 1.37-fold increase in the total bioavailable fraction of FX, respectively. Notably, during the study, it was observed that SEGs have the potential to serve as cake decoration for 3D printing to replace traditional cream under lower oil phase conditions (50%). These findings suggest that SP-PEs-stabilized Pickering emulsion gels hold promise as carriers for delivering bioactive compounds, offering the potential for various innovative food applications.


Subject(s)
Pectins , Salmon , Xanthophylls , Animals , Emulsions/chemistry , Gels/chemistry , Particle Size
4.
Int J Biol Macromol ; 258(Pt 1): 128805, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104682

ABSTRACT

The growing prevalence of dysphagia among the aging population presents a significant challenge. Many highly nutritious foods, like salmon, are often unsuitable for the elderly due to their firm texture when heated. To address this concern, a combination of salmon myofibrillar protein (SMP), Konjac glucomannan (KGM), and different emulsion fillers-such as oil droplets, octenyl succinic anhydride (OSA)-modified potato starch emulsion, and high methoxylated pectin (HMP) emulsions-was selected to enhance the network of salmon protein gels with the aims to create potential applications as dysphagia-friendly foods. The International Dysphagia Dietary Standardization Initiative (IDDSI) test indicated that all gel samples were classified as level 5. The OSA-SMP-KGM gel exhibited notably higher cohesiveness (P < 0.05), reduced adhesion, and enhanced mouthfeel. The OSA-SMP-KGM gel exhibited a smooth surface and excellent water retention (92.4 %), rendering it suitable for individuals with swallowing difficulties, particularly those prone to experiencing dry mouth. The yield stress of OSA-SMP-KGM gel was 594.14 Pa and stable structure was maintained during chewing and swallowing (γe/γv = 62.5). This study serves as a valuable reference for developing salmon-based products that are not only highly nutritious but also fulfill the criteria for a desirable swallowing texture.


Subject(s)
Deglutition Disorders , Animals , Humans , Aged , Emulsions/chemistry , Salmon , Diet , Gels/chemistry , Mannans/chemistry , Seafood
5.
Foods ; 12(17)2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37685246

ABSTRACT

Dandelion has received wide attention in food and medicine fields due to its excellent antioxidant properties. Nonetheless, the underlying mechanism of this action has not yet been fully clarified, particularly at the metabolic level. Herein, the effects of dandelion extract (DE) on H2O2-induced oxidative damage was investigated. The results indicate that the DE alleviated H2O2-induced cell damage (increased by 14.5% compared to H2O2 group), reduced the reactive oxygen species (ROS) level (decreased by 80.1% compared to H2O2 group), maintained the mitochondrial membrane potential (MMP) level, and increased antioxidant-related enzyme activities. Importantly, the metabolic response of PC12 cells indicates that H2O2 disturbed phospholipid metabolism and damaged cell membrane integrity. In addition, energy metabolism, the central nervous system, and the antioxidant-related metabolism pathway were perturbed. In contrast, DE rescued the H2O2-induced metabolic disorder and further alleviated oxidative damage. Collectively, these findings provide valuable stepping stones for a discussion of the mechanism and show the promise of DE as a suitable additive for functional food products.

6.
Food Res Int ; 170: 112958, 2023 08.
Article in English | MEDLINE | ID: mdl-37316049

ABSTRACT

Improving the stability of astaxanthin (AST) is a vital way to enhance its oral bioavailability. In this study, a microfluidic strategy for the preparation of astaxanthin nano-encapsulation system was proposed. Thanks to the precise control of microfluidic and the rapid preparation ability of the Mannich reaction, the resulting astaxanthin nano-encapsulation system (AST-ACNs-NPs) was obtained with average sizes of 200 nm, uniform spherical shape and high encapsulation rate of 75%. AST was successfully doped into the nanocarriers, according to the findings of the DFT calculation, fluorescence spectrum, Fourier transform spectroscopy, and UV-vis absorption spectroscopy. Compared with free AST, AST-ACNs-NPs showed better stability under the conditions of high temperature, pH and UV light with<20% activity loss rate. The nano-encapsulation system containing AST could significantly reduce the hydrogen peroxide produced by reactive oxygen species, keep the potential of the mitochondrial membrane at a healthy level, and improve the antioxidant ability of H2O2-induced RAW 264.7 cells. These results indicated that microfluidics-based astaxanthin delivery system is an effective solution to improve the bioaccessibility of bioactive substances and has potential application value in food industry.


Subject(s)
Hydrogen Peroxide , Microfluidics , Antioxidants/pharmacology , Biological Availability
7.
Biomaterials ; 292: 121937, 2023 01.
Article in English | MEDLINE | ID: mdl-36495803

ABSTRACT

Smart delivery systems with stimuli-responsive capability are able to improve the bioaccessibility through increasing the solubility, physicochemical stability and biocompatibility of bioactive compounds. In this study, the astaxanthin nanoparticles with reactive oxygen species (ROS) and pH dual-response function were design and constructed using poly (propylene sulfide) covalently modified sodium alginate as carriers based on ultrasonic assisted self-assembly strategy. Atomic force microscope and scanning electron microscope analysis showed that the nanoparticles were spherical in shape with a size of around 260 nm. Meanwhile, the astaxanthin nanoparticles showed both pH and ROS stimuli-responsive release characteristics. In vitro cell experiments showed that astaxanthin nanoparticles significantly inhibited the production of ROS and mitochondrial depolarization induced by oxidative stress. In vivo colitis experiment of mice revealed that astaxanthin nanoparticles could significantly relieve colitis, protect the integrity of colon tissue and restore the expression of tight junction proteins ZO-1 and occludin. The abundance of Lactobacillus and Lachnospiraceae, and the ratio of Firmicutes/Bacteroidota of gut microbiota were significantly improved after intervention of the stimuli-responsive astaxanthin nanoparticles. This work provided a simple strategy for constructing ROS/pH dual response delivery system, which provided an experimental basis for improving the oral bioavailability of hydrophobic active compounds.


Subject(s)
Colitis , Nanoparticles , Mice , Animals , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Colitis/drug therapy , Hydrogen-Ion Concentration
8.
Foods ; 11(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35327298

ABSTRACT

Pickering emulsions stabilized from natural sources are often used to load unstable bio-active ingredients, such as astaxanthin (AXT), to improve their functionality. In this study, AXT-loaded Pickering emulsions were successfully prepared by 2,2,6,6-tetramethy-1-piperidine oxide (TEMPO)-oxidized cellulose nanofibers (TOCNFs) from Undaria pinnatifida. The morphology analysis showed that TOCNFs had a high aspect ratio and dispersibility, which could effectively prevent the aggregation of oil droplets. The stable emulsion was obtained after exploring the influence of different factors (ultrasonic intensity, TOCNFs concentration, pH, and ionic strength). As expected, AXT-loaded Pickering emulsions showed good stability at 50 °C and 14 days of storage. The results of simulated in vitro digestion showed that the emulsions exhibited higher release of free fatty acids (FFAs) and bioaccessibility of AXT than those in sunflower oil. Hence, our work brought new insights into the preparation of Pickering emulsions and their applications in protection and sustained, controlled release of AXT.

SELECTION OF CITATIONS
SEARCH DETAIL
...