Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 3599, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31399599

ABSTRACT

Controlling electronic transport through a single-molecule junction is crucial for molecular electronics or spintronics. In magnetic molecular devices, the spin degree-of-freedom can be used to this end since the magnetic properties of the magnetic ion centers fundamentally impact the transport through the molecules. Here we demonstrate that the electron pathway in a single-molecule device can be selected between two molecular orbitals by varying a magnetic field, giving rise to a tunable anisotropic magnetoresistance up to 93%. The unique tunability of the electron pathways is due to the magnetic reorientation of the transition metal center, resulting in a re-hybridization of molecular orbitals. We obtain the tunneling electron pathways by Kondo effect, which manifests either as a peak or a dip line shape. The energy changes of these spin-reorientations are remarkably low and less than one millielectronvolt. The large tunable anisotropic magnetoresistance could be used to control electronic transport in molecular spintronics.

2.
Nano Lett ; 17(5): 2887-2894, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28399371

ABSTRACT

The controlled synthesis of high-quality nitrogen (N) doped single layer graphene on the Ru(0001) surface has been achieved using the N-containing sole precursor azafullerence (C59NH). The synthesis process and doping properties have been investigated on the atomic scale by combining scanning tunneling microscopy and X-ray photoelectron spectroscopy measurements. We find for the first time that the concentration of N-related defects on the N-doped graphene/Ru(0001) surface is tunable by adjusting the dosage of sole precursor and the number of growth cycles. Two primary types of N-related defects have been observed. The predominant bonding configuration of N atoms in the obtained graphene layer is pyridinic N. Our findings indicate that the synthesis from heteroatom-containing sole precursors is a very promising approach for the preparation of doped graphene materials with controlled doping properties.

3.
ACS Nano ; 10(4): 4520-4, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27035629

ABSTRACT

The fate of superconductivity of a nanoscale superconducting film/island relies on the environment; for example, the proximity effect from the substrate plays a crucial role when the film thicknesses is much less than the coherent length. Here, we demonstrate that atomic-scale tuning of the proximity effects can be achieved by one atomically thin graphene layer inserted between the nanoscale Pb islands and the supporting Pt(111) substrate. By using scanning tunneling microscopy and spectroscopy, we show that the coupling between the electron in a normal metal and the Cooper pair in an adjacent superconductor is dampened by 1 order of magnitude via transmission through a single-atom-thick graphene. More interestingly, the superconductivity of the Pb islands is greatly affected by the moiré patterns of graphene, showing the intriguing influence of the graphene-substrate coupling on the superconducting properties of the overlayer.

4.
ACS Nano ; 8(3): 2246-51, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24484418

ABSTRACT

Induction of chirality in planar adsorbates by hydrogenation of phthalocyanine molecules on a gold surface is demonstrated. This process merely lowers the molecular symmetry from 4- to 2-fold, but also breaks the mirror symmetry of the entire adsorbate complex (molecule and surface), thus rendering it chiral without any realignment at the surface. Repositioning of single molecules by manipulation with the scanning tunneling microscope (STM) causes interconversion of enantiomers. Dehydrogenation of the adsorbate by means of inelastic electron tunneling restores the mirror symmetry of the adsorbate complex. STM as well as density functional theory (DFT) calculations show that chirality is actually imprinted into the electronic molecular system by the surface, i.e., the lowest unoccupied orbital is devoid of mirror symmetry.

SELECTION OF CITATIONS
SEARCH DETAIL
...