Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 5699472, 2022.
Article in English | MEDLINE | ID: mdl-35535198

ABSTRACT

Human Learning Optimization (HLO) is an efficient metaheuristic algorithm in which three learning operators, i.e., the random learning operator, the individual learning operator, and the social learning operator, are developed to search for optima by mimicking the learning behaviors of humans. In fact, people not only learn from global optimization but also learn from the best solution of other individuals in the real life, and the operators of Differential Evolution are updated based on the optima of other individuals. Inspired by these facts, this paper proposes two novel differential human learning optimization algorithms (DEHLOs), into which the Differential Evolution strategy is introduced to enhance the optimization ability of the algorithm. And the two optimization algorithms, based on improving the HLO from individual and population, are named DEHLO1 and DEHLO2, respectively. The multidimensional knapsack problems are adopted as benchmark problems to validate the performance of DEHLOs, and the results are compared with the standard HLO and Modified Binary Differential Evolution (MBDE) as well as other state-of-the-art metaheuristics. The experimental results demonstrate that the developed DEHLOs significantly outperform other algorithms and the DEHLO2 achieves the best overall performance on various problems.


Subject(s)
Algorithms , Humans
2.
Sensors (Basel) ; 19(6)2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30889902

ABSTRACT

Traditional industry is seeing an increasing demand for more autonomous and flexible manufacturing in unstructured settings, a shift away from the fixed, isolated workspaces where robots perform predefined actions repetitively. This work presents a case study in which a robotic manipulator, namely a KUKA KR90 R3100, is provided with smart sensing capabilities such as vision and adaptive reasoning for real-time collision avoidance and online path planning in dynamically-changing environments. A machine vision module based on low-cost cameras and color detection in the hue, saturation, value (HSV) space is developed to make the robot aware of its changing environment. Therefore, this vision allows the detection and localization of a randomly moving obstacle. Path correction to avoid collision avoidance for such obstacles with robotic manipulator is achieved by exploiting an adaptive path planning module along with a dedicated robot control module, where the three modules run simultaneously. These sensing/smart capabilities allow the smooth interactions between the robot and its dynamic environment, where the robot needs to react to dynamic changes through autonomous thinking and reasoning with the reaction times below the average human reaction time. The experimental results demonstrate that effective human-robot and robot-robot interactions can be realized through the innovative integration of emerging sensing techniques, efficient planning algorithms and systematic designs.

SELECTION OF CITATIONS
SEARCH DETAIL
...