Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Oncol ; 12(4): 561-576, 2018 04.
Article in English | MEDLINE | ID: mdl-29465803

ABSTRACT

A number of prostate cancer (PCa)-specific genomic aberrations (denominated BRCAness genes) have been discovered implicating sensitivity to PARP inhibition within the concept of synthetic lethality. Recent clinical studies show favorable results for the PARP inhibitor olaparib used as single agent for treatment of metastatic castration-resistant PCa. Using 2D and 3D cell culture models mimicking the different treatment and progression stages of PCa, we evaluated a potential use for olaparib in combination with first-line endocrine treatments, androgen deprivation, and complete androgen blockade, and as a maintenance therapy following on from endocrine therapy. We demonstrate that the LNCaP cell line, possessing multiple aberrations in BRCAness genes, is sensitive to olaparib. Additive effects of olaparib combined with endocrine treatments in LNCaP are noted. In contrast, we find that the TMPRSS2:ERG fusion-positive cell lines VCaP and DuCaP do not show signs of synthetic lethality, but are sensitive to cytotoxic effects caused by olaparib. In consequence, additive effects of olaparib with endocrine therapy were not observable in these cell lines, showing the need for synthetic lethality in combination treatment regimens. Additionally, we show that PCa cells remain sensitive to olaparib treatment after initial androgen deprivation implicating a possible use of olaparib as maintenance therapy. In sum, our preclinical data recommend olaparib as a synthetic lethal treatment option in combination or sequenced to first-line endocrine therapy for PCa patients with diagnosed BRCAness.


Subject(s)
Androgens/metabolism , Maintenance Chemotherapy/methods , Models, Biological , Phthalazines/pharmacology , Piperazines/pharmacology , Prostatic Neoplasms, Castration-Resistant , Cell Line, Tumor , Humans , Male , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/therapy
2.
Oncotarget ; 6(8): 6105-22, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25749045

ABSTRACT

Androgen deprivation therapy induces apoptosis or cell cycle arrest in prostate cancer (PCa) cells. Here we set out to analyze whether MCL1, a known mediator of chemotherapy resistance regulates the cellular response to androgen withdrawal. Analysis of MCL1 protein and mRNA expression in PCa tissue and primary cell culture specimens of luminal and basal origin, respectively, reveals higher expression in cancerous tissue compared to benign origin. Using PCa cellular models in vitro and in vivo we show that MCL1 expression is upregulated in androgen-deprived PCa cells. Regulation of MCL1 through the AR signaling axis is indirectly mediated via a cell cycle-dependent mechanism. Using constructs downregulating or overexpressing MCL1 we demonstrate that expression of MCL1 prevents induction of apoptosis when PCa cells are grown under steroid-deprived conditions. The BH3-mimetic Obatoclax induces apoptosis and decreases MCL1 expression in androgen-sensitive PCa cells, while castration-resistant PCa cells are less sensitive and react with an upregulation of MCL1 expression. Synergistic effects of Obatoclax with androgen receptor inactivation can be observed. Moreover, clonogenicity of primary basal PCa cells is efficiently inhibited by Obatoclax. Altogether, our results suggest that MCL1 is a key molecule deciding over the fate of PCa cells upon inactivation of androgen receptor signaling.


Subject(s)
Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Prostatic Neoplasms/therapy , Pyrroles/pharmacology , Receptors, Androgen/metabolism , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Humans , Indoles , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Random Allocation , Risk Factors , Transfection , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...