Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38668678

ABSTRACT

OBJECTIVE: The purpose of this review is to systematically assess primary research publications on known genetic variants, which modify the risk for symptoms or dysfunction persisting 30 days or more following mild traumatic brain injury (mTBI). SUMMARY OF REVIEW: A search of PubMed and Embase from inception through June 2022 identified 42 studies that associated genetic variants with the presence of symptoms or cognitive dysfunction 30 days or more following mTBI. Risk of bias was assessed for each publication using the Newcastle Ottawa Scale (NOS). Fifteen of the 22 studies evaluating apolipoprotein E ( APOE ) ɛ4 concluded that it was associated with worse outcomes and 4 of the 8 studies investigating the brain-derived neurotrophic factor ( BDNF ) reported the Val66Met allele was associated with poorer outcomes. The review also identified 12 studies associating 28 additional variants with mTBI outcomes. Of these, 8 references associated specific variants with poorer outcomes. Aside from analyses comparing carriers and noncarriers of APOE ɛ4 and BDNF Val66Met, most of the reviewed studies were too dissimilar, particularly in terms of specific outcome measures but also in genes examined, to allow for direct comparisons of their findings. Moreover, these investigations were observational and subject to varying degrees of bias. CONCLUSIONS: The most consistent finding across articles was that APOE ɛ4 is associated with persistent post-mTBI impairment (symptoms or cognitive dysfunction) more than 30 days after mTBI. The sparsity of other well-established and consistent findings in the mTBI literature should motivate larger, prospective studies, which characterize the risk for persistent impairment with standardized outcomes in mTBI posed by other genetic variants influencing mTBI recovery.

2.
Front Hum Neurosci ; 16: 910345, 2022.
Article in English | MEDLINE | ID: mdl-35865353

ABSTRACT

Introduction: Responsive neurostimulation is an evolving therapeutic option for patients with treatment-refractory epilepsy. Open-loop, continuous stimulation of the anterior thalamic nuclei is the only approved modality, yet chronic stimulation rarely induces complete seizure remission and is associated with neuropsychiatric adverse effects. Accounts of off-label responsive stimulation in thalamic nuclei describe significant improvements in patients who have failed multiple drug regimens, vagal nerve stimulation, and other invasive measures. This systematic review surveys the currently available data supporting the use of responsive thalamic neurostimulation in primary and secondary generalized, treatment-refractory epilepsy. Materials and Methods: A systematic review was performed using the following combination of keywords and controlled vocabulary: ("Seizures"[Mesh] AND "Thalamus"[Mesh] AND "Deep Brain Stimulation"[Mesh]) OR (responsive neurostim* AND (thalamus[MeSH])) OR [responsive neurostimulation AND thalamus AND (epilepsy OR seizures)]. In addition, a search of the publications listed under the PubMed "cited by" tab was performed for all publications that passed title/abstract screening in addition to manually searching their reference lists. Results: Ten publications were identified describing a total of 29 subjects with a broad range of epilepsy disorders treated with closed-loop thalamic neurostimulation. The median age of subjects was 31 years old (range 10-65 years). Of the 29 subjects, 15 were stimulated in the anterior, 11 in the centromedian, and 3 in the pulvinar nuclei. Excluding 5 subjects who were treated for 1 month or less, median time on stimulation was 19 months (range 2.4-54 months). Of these subjects, 17/24 experienced greater than or equal to 50%, 11/24 least 75%, and 9/24 at least 90% reduction in seizures. Although a minority of patients did not exhibit significant clinical improvement by follow-up, there was a general trend of increasing treatment efficacy with longer periods on closed-loop thalamic stimulation. Conclusion: The data supporting off-label closed-loop thalamic stimulation for refractory epilepsy is limited to 29 adult and pediatric patients, many of whom experienced significant improvement in seizure duration and frequency. This encouraging progress must be verified in larger studies.

3.
J Integr Neurosci ; 21(3): 77, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35633158

ABSTRACT

BACKGROUND: Though primarily a pulmonary disease, Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus can generate devastating disease states that affect multiple organ systems including the central nervous system (CNS). The various neurological disorders associated with COVID-19 range in severity from mild symptoms such as headache, or myalgias to more severe symptoms such as stroke, psychosis, and anosmia. While some of the COVID-19 associated neurological complications are mild and reversible, a significant number of patients suffer from stroke. Studies have shown that COVID-19 infection triggers a wave of inflammatory cytokines that induce endothelial cell dysfunction and generate coagulopathy that increases the risk of stroke or thromboses. Inflammation of the endothelium following infection may also destabilize atherosclerotic plaque and induce thrombotic stroke. Although uncommon, there have also been reports of hemorrhagic stroke associated with COVID-19. The proposed mechanisms include a blood pressure increase caused by infection leading to a reduction in angiotensin converting enzyme-2 (ACE-2) levels that results in an imbalance of the renin-angiotensin system ultimately manifesting inflammation and vasoconstriction. Coagulopathy, as demonstrated by elevated prothrombin time (PT), has also been posited as a factor contributing to hemorrhagics stroke in patients with COVID-19. Other neurological conditions associated with COVID-19 include encephalopathy, anosmia, encephalitis, psychosis, brain fog, headache, depression, and anxiety. Though there are several hypotheses reported in the literature, a unifying pathophysiological mechanism of many of these disorders remains unclear. Pulmonary dysfunction leading to poor oxygenation of the brain may explain encephalopathy and other disorders in COVID-19 patients. Alternatively, a direct invasion of the CNS by the virus or breach of the blood-brain barrier by the systemic cytokines released during infection may be responsible for these conditions. Notwithstanding, the relationship between the inflammatory cytokine levels and conditions such as depression and anxiety is contradictory and perhaps the social isolation during the pandemic may in part be a contributing factor to some of the reported CNS disorders. OBJECTIVE: In this article, we review the current literature pertaining to some of the most significant and common neurological disorders such as ischemic and hemorrhagic stroke, encephalopathy, encephalitis, brain fog, Long COVID, headache, Guillain-Barre syndrome, depression, anxiety, and sleep disorders in the setting of COVID-19. We summarize some of the most relevant literature to provide a better understanding of the mechanistic details regarding these disorders in order to help physicians monitor and treat patients for significant COVID-19 associated neurologic impairments. METHODS: A literature review was carried out by the authors using PubMed with the search terms "COVID-19" and "Neurology", "Neurological Manifestations", "Neuropsychiatric Manifestations", "Stroke", "Encephalopathy", "Headache", "Guillain-Barre syndrome", "Depression", "Anxiety", "Encephalitis", "Seizure", "Spasm", and "ICUAW". Another search was carried out for "Long-COVID" and "Post-Acute COVID-19" and "Neurological Manifestations" or "Neuropsychiatric Manifestations". Articles such as case reports, case series, and cohort studies were included as references. No language restrictions were enforced. In the case of anxiety and depression, attempts were made to focus mainly on articles describing these conditions in infected patients. RESULTS: A total of 112 articles were reviewed. The incidence, clinical outcomes, and pathophysiology of selected neurological disorders are discussed below. Given the recent advent of this disease, the incidence of certain neurologic sequelae was not always available. Putative mechanisms for each condition in the setting of COVID-19 are outlined.


Subject(s)
COVID-19 , Nervous System Diseases , Anosmia/virology , COVID-19/complications , Cytokines , Disease Progression , Encephalitis/virology , Headache/virology , Hemorrhagic Stroke/virology , Humans , Inflammation , Nervous System Diseases/virology , SARS-CoV-2 , Stroke/virology , Post-Acute COVID-19 Syndrome
4.
World Neurosurg ; 161: e384-e394, 2022 05.
Article in English | MEDLINE | ID: mdl-35151920

ABSTRACT

OBJECTIVE: To compare safety and efficacy profiles in aneurysms treated with Pipeline Embolization Device or Pipeline Flex versus Surpass Streamline flow diverters (FDs). METHODS: Patients who underwent flow diversion for aneurysm treatment at 2 centers were included. Covariates comprised patient demographics, comorbidities, and aneurysm characteristics. Metrics included number of devices, adjuvant device use, case duration, and radiation exposure. Outcomes included periprocedural complications and radiographic results at follow-up. Propensity score-matched pairs were generated using demographic and aneurysm characteristics to verify the outcomes in equally sized groups. RESULTS: The majority of 141 flow diversion procedures performed on 126 patients were in the anterior circulation (96%) and unruptured (93%). Operators experienced more complications placing Surpass FDs compared with Pipelines (18.2% vs. 3.1%, P = 0.005) but used fewer Surpass devices per case (1 device in all Surpass cases and range for Pipeline cases 1-7; P < 0.001). Ballooning was more frequent for Surpass (29.5% vs. 2.1%, P < 0.001). There were no differences in mortality (2.1% vs. 0, P = 1.00), intracranial hemorrhage (3.1% vs. 0, P = 0.551), or stroke (4.2% vs. 6.8%, P = 0.680). Rates of aneurysm obliteration at follow-up were similar. Propensity-matched pairs had no differences in FD deployment complications or perioperative events, yet the significant differences remained for adjuvant balloon use and number of FDs deployed. CONCLUSIONS: While the devices demonstrated similar safety and efficacy profiles, deployment of the Surpass Streamline was more technically challenging than Pipeline Embolization Device or Pipeline Flex. Prospective cohort studies are needed to corroborate these findings.


Subject(s)
Intracranial Aneurysm , Blood Vessel Prosthesis , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/surgery , Propensity Score , Prospective Studies , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...