Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5852, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730824

ABSTRACT

Understanding the nature and origin of collective excitations in materials is of fundamental importance for unraveling the underlying physics of a many-body system. Excitation spectra are usually obtained by measuring the dynamical structure factor, S(Q, ω), using inelastic neutron or x-ray scattering techniques and are analyzed by comparing the experimental results against calculated predictions. We introduce a data-driven analysis tool which leverages 'neural implicit representations' that are specifically tailored for handling spectrographic measurements and are able to efficiently obtain unknown parameters from experimental data via automatic differentiation. In this work, we employ linear spin wave theory simulations to train a machine learning platform, enabling precise exchange parameter extraction from inelastic neutron scattering data on the square-lattice spin-1 antiferromagnet La2NiO4, showcasing a viable pathway towards automatic refinement of advanced models for ordered magnetic systems.

2.
Phys Rev Lett ; 126(19): 197202, 2021 May 14.
Article in English | MEDLINE | ID: mdl-34047602

ABSTRACT

The standard model of spin-transfer torque (STT) in antiferromagnetic spintronics considers the exchange of angular momentum between quantum spins of flowing electrons and noncollinear-to-them localized spins treated as classical vectors. These vectors are assumed to realize Néel order in equilibrium, ↑↓⋯↑↓, and their STT-driven dynamics is described by the Landau-Lifshitz-Gilbert (LLG) equation. However, many experimentally employed materials (such as archetypal NiO) are strongly electron-correlated antiferromagnetic Mott insulators (AFMIs) whose localized spins form a ground state quite different from the unentangled Néel state |↑↓⋯↑↓⟩. The true ground state is entangled by quantum spin fluctuations, leading to the expectation value of all localized spins being zero, so that LLG dynamics of classical vectors of fixed length rotating due to STT cannot even be initiated. Instead, a fully quantum treatment of both conduction electrons and localized spins is necessary to capture the exchange of spin angular momentum between them, denoted as quantum STT. We use a recently developed time-dependent density matrix renormalization group approach to quantum STT to predict how injection of a spin-polarized current pulse into a normal metal layer coupled to an AFMI overlayer via exchange interaction and possibly small interlayer hopping-mimicking, e.g., topological-insulator/NiO bilayer employed experimentally-will induce a nonzero expectation value of AFMI localized spins. This new nonequilibrium phase is a spatially inhomogeneous ferromagnet with a zigzag profile of localized spins. The total spin absorbed by AFMI increases with electron-electron repulsion in AFMIs, as well as when the two layers do not exchange any charge.

3.
Phys Rev Lett ; 113(1): 019602, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-25032935
4.
Phys Rev Lett ; 113(26): 267201, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25615377

ABSTRACT

Most Heisenberg-like spin chains flow to a universal free-fermion fixed point near the magnetic-field induced saturation point. Here, we show that an exotic fixed point, characterized by two species of low-energy excitations with mutual anyonic statistics, may also emerge in such spin chains if the dispersion relation has two minima. By using bosonization, two-magnon exact calculations, and numerical density-matrix-renormalization-group calculations, we demonstrate the existence of this anyonic-liquid fixed point in an xxz spin chain with up to second-neighbor interactions. We also identify a range of microscopic parameters, which support this phase.

5.
Phys Rev Lett ; 108(3): 036806, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22400774

ABSTRACT

We provide numerical evidence that a p(x)-ip(y) paired Bonderson-Slingerland (BS) non-Abelian hierarchy state is a strong candidate for the observed ν=12/5 quantum Hall plateau. We confirm the existence of a gapped incompressible ν=12/5 quantum Hall state with shift S=2 on the sphere, matching that of the BS state. The exact ground state of the Coulomb interaction at S=2 is shown to have a large overlap with the BS trial wave function. Larger overlaps are obtained with BS-type wave functions that are hierarchical descendants of general p(x)-ip(y) weakly paired states at ν=5/2. We perform a finite-size scaling analysis of the ground-state energies for ν=12/5 states at shifts corresponding to the BS (S=2) and 3-clustered Read-Rezayi (S=-2) universality classes. This analysis reveals very tight competition between these two non-Abelian topological orders.

6.
Phys Rev Lett ; 106(18): 186802, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21635117

ABSTRACT

We present the first numerical computation of the neutral fermion gap, Δ(F), in the ν=5/2 quantum Hall state, which is analogous to the energy gap for a Bogoliubov-de Gennes quasiparticle in a superconductor. We find Δ(F)≈0.027e(2)/εℓ(0), comparable to the charge gap. We also deduce an effective Fermi velocity v(F) for neutral fermions from the low-energy spectra for odd numbers of electrons, and thereby obtain a correlation length ξ(F)=v(F)/Δ(F)≈1.3ℓ(0). We comment on implications for experiments, topological quantum information processing, and electronic mechanisms of superconductivity.

7.
Phys Rev Lett ; 106(14): 146401, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21561205

ABSTRACT

It is commonly believed that strongly interacting one-dimensional Fermi systems with gapless excitations are effectively described by Luttinger liquid theory. However, when the temperature of the system is high compared to the spin energy, but small compared to the charge energy, the system becomes "spin incoherent." We present numerical evidence showing that the one-dimensional "t-J-Kondo" lattice, consisting of a t-J chain interacting with localized spins, displays all the characteristic signatures of spin-incoherent physics, but in the ground state. We argue that similar physics may be present in a wide range of strongly interacting systems.

8.
Phys Rev Lett ; 105(22): 226803, 2010 Nov 26.
Article in English | MEDLINE | ID: mdl-21231412

ABSTRACT

Conductance is related to dynamical correlation functions which can be calculated with time-dependent methods. Using boundary conformal field theory, we relate the conductance tensors of quantum junctions of multiple wires to static correlation functions in a finite system. We then propose a general method for determining the conductance through time-independent calculations alone. Applying the method to a Y junction of interacting quantum wires, we numerically verify the theoretical prediction for the conductance of the chiral fixed point of the Y junction and then calculate the thus far unknown conductance of its M fixed point with the time-independent density matrix renormalization group method.

9.
Phys Rev Lett ; 103(2): 025303, 2009 Jul 10.
Article in English | MEDLINE | ID: mdl-19659219

ABSTRACT

We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic "Cooper-pair Bose-metal" phase, which has a gap for single fermion excitations but gapless and uncondensed "Cooper-pair" excitations residing on a "Bose surface" in momentum space.

10.
Phys Rev Lett ; 101(23): 236801, 2008 Dec 05.
Article in English | MEDLINE | ID: mdl-19113575

ABSTRACT

We analyze charge-e/4 quasiparticle tunneling between the edges of a point contact in a non-Abelian model of the nu = 5/2 quantum Hall state in the presence of a finite voltage difference using the time-dependent density-matrix renormalization group method. We confirm that, as the voltage decreases, the system is broken into two pieces. In the limits of small and large voltage, we recover the results expected from perturbation theory about the infrared and ultraviolet fixed points. We test our methods by finding the analogous nonequilibrium current through a point contact at nu = 1/3.

11.
Phys Rev Lett ; 101(5): 050401, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18764375

ABSTRACT

We show that chains of interacting Fibonacci anyons can support a wide variety of collective ground states ranging from extended critical, gapless phases to gapped phases with ground-state degeneracy and quasiparticle excitations. In particular, we generalize the Majumdar-Ghosh Hamiltonian to anyonic degrees of freedom by extending recently studied pairwise anyonic interactions to three-anyon exchanges. The energetic competition between two- and three-anyon interactions leads to a rich phase diagram that harbors multiple critical and gapped phases. For the critical phases and their higher symmetry end points we numerically establish descriptions in terms of two-dimensional conformal field theories. A topological symmetry protects the critical phases and determines the nature of gapped phases.

12.
Phys Rev Lett ; 98(16): 160409, 2007 Apr 20.
Article in English | MEDLINE | ID: mdl-17501404

ABSTRACT

We discuss generalizations of quantum spin Hamiltonians using anyonic degrees of freedom. The simplest model for interacting anyons energetically favors neighboring anyons to fuse into the trivial ("identity") channel, similar to the quantum Heisenberg model favoring neighboring spins to form spin singlets. Numerical simulations of a chain of Fibonacci anyons show that the model is critical with a dynamical critical exponent z=1, and described by a two-dimensional (2D) conformal field theory with central charge c=7/10. An exact mapping of the anyonic chain onto the 2D tricritical Ising model is given using the restricted-solid-on-solid representation of the Temperley-Lieb algebra. The gaplessness of the chain is shown to have topological origin.

13.
Phys Rev Lett ; 93(7): 076401, 2004 Aug 13.
Article in English | MEDLINE | ID: mdl-15324254

ABSTRACT

We describe an extension to the density matrix renormalization group method incorporating real-time evolution. Its application to transport problems in systems out of equilibrium and frequency dependent correlation functions is discussed and illustrated in several examples. We simulate a scattering process in a spin chain which generates a spatially nonlocal entangled wave function.

14.
Phys Rev Lett ; 90(24): 247203, 2003 Jun 20.
Article in English | MEDLINE | ID: mdl-12857223

ABSTRACT

Novel ground-state spin structures in undoped and lightly doped manganites are investigated based on the orbital-degenerate double-exchange model, via mean-field and numerical techniques. In undoped manganites, a new antiferromagnetic (AFM) state, called the E-type phase, is found adjacent in parameter space to the A-type AFM phase. Its structure is in agreement with recent experimental results. This insulating E-AFM state is also competing with a ferromagnetic metallic phase as well. For doped layered manganites, the phase diagram includes another new AFM phase of the CxE1-x type. Experimental signatures of the new phases are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...