Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 25(1): e14180, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38011008

ABSTRACT

For commissioning and quality assurance for adaptive workflows on the MR-linac, a dosimeter which can measure time-resolved dose during MR image acquisition is desired. The Blue Physics model 10 scintillation dosimeter is potentially an ideal detector for such measurements. However, some detectors can be influenced by the magnetic field of the MR-linac. To assess the calibration methods and magnetic field dependency of the Blue Physics scintillator in the 1.5 T MR-linac. Several calibration methods were assessed for robustness. Detector characteristics and the influence of the calibration methods were assessed based on dose reproducibility, dose linearity, dose rate dependency, relative output factor (ROF), percentage depth dose profile, axial rotation and the radial detector orientation with respect to the magnetic field. The potential application of time-resolved dynamic dose measurements during MRI acquisition was assessed. A variation of calibration factors was observed for different calibration methods. Dose reproducibility, dose linearity and dose rate stability were all found to be within tolerance and were not significantly affected by different calibration methods. Measurements with the detector showed good correspondence with reference chambers. The ROF and radial orientation dependence measurements were influenced by the calibration method used. Axial detector dependence was assessed and relative readout differences of up to 2.5% were observed. A maximum readout difference of 10.8% was obtained when rotating the detector with respect to the magnetic field. Importantly, measurements with and without MR image acquisition were consistent for both static and dynamic situations. The Blue Physics scintillation detector is suitable for relative dosimetry in the 1.5 T MR-linac when measurements are within or close to calibration conditions.


Subject(s)
Particle Accelerators , Radiation Dosimeters , Humans , Reproducibility of Results , Phantoms, Imaging , Radiometry/methods , Magnetic Resonance Imaging/methods , Magnetic Fields
2.
J Appl Clin Med Phys ; 25(1): e14209, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37983685

ABSTRACT

BACKGROUND: Plastic scintillating detectors (PSD) have gained popularity due to small size and are ideally suited in small-field dosimetry due to no correction needed and hence detector reading can be compared to dose. Likewise, these detectors are active and water equivalent. A new PSD from Blue Physics is characterized in photon beam. PURPOSE: Innovation in small-field dosimetry detector has led us to examine Blue Physics PSD (BP-PSD) for use in photon beams from linear accelerator. METHODS: BP-PSD was acquired and its characteristics were evaluated in photon beams from a Varian TrueBeam. Data were collected in a 3D water tank. Standard parameters; dose, dose rate, energy, angular dependence and temperature dependence were studied. Depth dose, profiles and output in a reference condition as well as small fields were measured. RESULTS: BP-PSD is versatile and provides data very similar to an ion chamber when Cerenkov radiation is properly accounted. This device measures data pulse by pulse which very few detectors can perform. The differences between ion chamber data and PSD are < 2% in most cases. The angular dependence is a bit pronounces to 1.5% which is due to PSD housing. Depth dose and profiles are comparable within < 1% to an ion chamber. For small fields this detector provides suitable field output factor compared to other detectors and Monte Carlo (MC) simulated data without any added correction factor. CONCLUSIONS: The characteristics of Blue Physics PSD is uniquely suitable in photon beam and more so in small fields. The data are reproducible compared to ion chamber for most parameters and ideally suitable for small-field dosimetry without any correction factor.


Subject(s)
Radiometry , Radiotherapy Planning, Computer-Assisted , Humans , Photons , Monte Carlo Method , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...