Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 365: 121391, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38905793

ABSTRACT

In many industrial processes a large amount of water with high salinity is co-produced whose treatment poses considerable challenges to the available technologies. The produced water (PW) from offshore operations is currently being discharged to sea without treatment for dissolved pollutants due to space limitations. A biofilter on the seabed adjacent to a production platform would negate all size restrictions, thus reducing the environmental impact of oil and gas production offshore. The moving bed biofilm reactor (MBBR) was investigated for PW treatment from different oilfields in the North Sea at 10 °C and 40 °C, corresponding to the sea and PW temperature, respectively. The six PW samples in study were characterized by high salinity and chemical oxygen demand with ecotoxic effects on marine algae S. pseudocostatum (0.4%

2.
ACS Omega ; 5(49): 31753-31764, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33344829

ABSTRACT

The detailed chemical composition of crude oil in subsurface reservoirs provides important information about reservoir connectivity and can potentially play a very important role for the understanding of recovery processes. Relying on studying produced oil samples alone to understand the rock-fluid and fluid-fluid interactions is insufficient as the heavier polar components may be retained by tight reservoirs and not produced. These heavy and polar compounds that constitute the resin and asphaltene fractions of crude oil are typically present in low concentrations and yet are determining for the physical-chemical properties of the oil because of their polarity. In order to obtain a fingerprint analysis of oils including polar compounds from different wells, the oil content of drill cores has been extracted and analyzed. Infrared spectroscopy has been used to perform chemical fingerprinting of the oil extracted from drill cores sampled in different geographical locations of the Danish North Sea. Statistical analysis has been employed to identify the chemical differences within the sample set and explore the link between chemical composition and geographic location of the sample. A principal component analysis, based on spectral peak fitting in the 1800-1400 cm-1 range, has allowed for statistical grouping of the samples and identified the primary chemical feature characteristic of these groups. Statistically significant differences in the quantities of polar oxygen- and nitrogen-containing compounds were found between the oil wells. The results of this analysis have been used as guidelines and reference to establish an express statistical approach based on the full-range infrared spectra for a further expansion of the sample set. The chemical information presented in this work is discussed in relation to oil fingerprinting and geochemical analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...