Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Syst Biol ; 20(3): 187-216, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38216754

ABSTRACT

Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, metabolic dysfunction-associated steatotic liver disease (MASLD) is gaining importance as the disease can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in MASLD development, but molecular mechanisms responsible for disease progression remained unresolved. Here, we uncover in primary hepatocytes from a preclinical model fed with a Western diet (WD) an increased basal MET phosphorylation and a strong downregulation of the PI3K-AKT pathway. Dynamic pathway modeling of hepatocyte growth factor (HGF) signal transduction combined with global proteomics identifies that an elevated basal MET phosphorylation rate is the main driver of altered signaling leading to increased proliferation of WD-hepatocytes. Model-adaptation to patient-derived hepatocytes reveal patient-specific variability in basal MET phosphorylation, which correlates with patient outcome after liver surgery. Thus, dysregulated basal MET phosphorylation could be an indicator for the health status of the liver and thereby inform on the risk of a patient to suffer from liver failure after surgery.


Subject(s)
Carcinoma, Hepatocellular , Fatty Liver , Liver Neoplasms , Humans , Phosphorylation , Phosphatidylinositol 3-Kinases/metabolism , Hepatocytes/metabolism , Hepatocyte Growth Factor/metabolism , Fatty Liver/metabolism , Liver Neoplasms/pathology
2.
BMC Med ; 20(1): 47, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35101037

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) is a risk factor in surgery. MetS can progress to metabolic (dysfunction)-associated fatty liver disease (MAFLD), a vast-growing etiology of primary liver tumors which are major indications for liver surgery. The aim of this meta-analysis was to investigate the impact of MetS on complications and long-term outcomes after hepatectomy. METHODS: The protocol for this meta-analysis was registered at PROSPERO prior to data extraction. MEDLINE, Web of Science, and Cochrane Library were searched for publications on liver resections and MetS. Comparative studies were included. Outcomes encompassed postoperative complications, mortality, and long-term oncologic status. Data were pooled as odds ratio (OR) with a random-effects model. Risk of bias was assessed using the Quality in Prognostic Studies tool (QUIPS), and the certainty of the evidence was evaluated with GRADE. Subgroup analyses for patients with histopathologically confirmed non-alcoholic fatty liver disease (NAFLD) versus controls were performed. RESULTS: The meta-analyses included fifteen comparative studies. Patients with MetS suffered significantly more overall complications (OR 1.55; 95% CI [1.05; 2.29]; p=0.03), major complications (OR 1.97 95% CI [1.13; 3.43]; p=0.02; I2=62%), postoperative hemorrhages (OR 1.76; 95% CI [1.23; 2.50]; p=0.01) and infections (OR 1.63; 95% CI [1.03; 2.57]; p=0.04). There were no significant differences in mortality, recurrence, 1- or 5-year overall or recurrence-free survivals. Patients with histologically confirmed NAFLD did not have significantly more overall complications; however, PHLF rates were increased (OR 4.87; 95% CI [1.22; 19.47]; p=0.04). Recurrence and survival outcomes did not differ significantly. The certainty of the evidence for each outcome ranged from low to very low. CONCLUSION: Patients with MetS that undergo liver surgery suffer more complications, such as postoperative hemorrhage and infection but not liver-specific complications-PHLF and biliary leakage. Histologically confirmed NAFLD is associated with significantly higher PHLF rates, yet, survivals of these patients are similar to patients without the MetS. Further studies should focus on identifying the tipping point for increased risk in patients with MetS-associated liver disease, as well as reliable markers of MAFLD stages and early markers of PHLF. TRIAL REGISTRATION: PROSPERO Nr: CRD42021253768.


Subject(s)
Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Hepatectomy/adverse effects , Humans , Metabolic Syndrome/complications , Metabolic Syndrome/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/surgery , Risk Factors
4.
Cancers (Basel) ; 12(8)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823513

ABSTRACT

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide and features various tumor escape mechanisms from treatment-induced stress. HSP70 plays a critical role in cell protection under stress. eIF4G physiologically regulates the formation of the protein-ribosomal complex and maintains cellular protein synthesis. However, the precise cooperation of both in HCC remains poorly understood. In this study, we demonstrate that HSP70 expression is positively correlated with eIF4G in tumor specimens from 25 HCC patients, in contrast to the adjacent non-tumorous tissues, and that both influence the survival of HCC patients. Mechanistically, this study indicates that HSP70 and eIF4G interact with each other in vitro. We further show that the HSP70-eIF4G interaction contributes to promoting cellular protein synthesis, enhancing cell proliferation, and inhibiting cell apoptosis. Collectively, this study reveals the pivotal role of HSP70-eIF4G interaction as an escape mechanism in HCC. Therefore, modulation of the HSP70-eIF4G interaction might be a potential novel therapeutic target of HCC treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...