Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(25): 37436-37449, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33379578

ABSTRACT

Understanding the physics behind the ejection dynamics in laser-induced forward transfer (LIFT) is of key importance in order to develop new printing techniques and overcome their limitations. In this work, a new jet-on-jet ejection phenomenon is presented and its physical origin is discussed. Time-resolved shadowgraphy imaging was employed to capture the ejection dynamics and is complemented with the photodiode intensity measurements in order to capture the light emitted by laser-induced plasma. A focus scan was conducted, which confirmed that the secondary jet is ejected due to laser-induced plasma generated at the center of the laser spot, where intensity is the highest. Five characteristic regions of the focus scan, with regards to laser fluence level and laser spot size, were distinguished. The study provides new insights in laser-induced jet dynamics and shows the possibility of overcoming the trade-off between the printing resolution and printing distance.

2.
Appl Opt ; 56(22): 6398-6404, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-29047840

ABSTRACT

We present the use of digital micromirror devices as variable illumination masks for pitch-splitting multiple exposures to laser machine the surfaces of materials. Ultrafast laser pulses of length 150 fs and 800 nm central wavelength were used for the sequential machining of contiguous patterns on the surface of samples in order to build up complex structures with sub-diffraction limit features. Machined patterns of tens to hundreds of micrometers in lateral dimensions with feature separations as low as 270 nm were produced in electroless nickel on an optical setup diffraction limited to 727 nm, showing a reduction factor below the Abbe diffraction limit of ∼2.7×. This was compared to similar patterns in a photoresist optimized for two-photon absorption, which showed a reduction factor of only 2×, demonstrating that multiple exposures via ablation can produce a greater resolution enhancement than via two-photon polymerization.

3.
Appl Opt ; 54(16): 4984-8, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26192655

ABSTRACT

A digital micromirror device has been used to project variable-period grating patterns at high values of demagnification for direct laser ablation on planar surfaces. Femtosecond laser pulses of ∼1 mJ pulse energy at 800 nm wavelength from a Ti:sapphire laser were used to machine complex patterns with areas of up to ∼1 cm2 on thin films of bismuth telluride by dynamically modifying the grating period as the sample was translated beneath the imaged laser pulses. Individual ∼30 by 30 µm gratings were stitched together to form contiguous structures, which had diffractive effects clearly visible to the naked eye. This technique may have applications in marking, coding, and security features.

4.
Opt Express ; 21(12): 14853-8, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23787672

ABSTRACT

We present a rapid technique for the patterning of complex structures with ~2µm resolution via multiphoton polymerization, through use of a single ultrashort pulse in combination with the spatial intensity modulation possible from a digital multimirror device. Sub-micron features have been achieved through the use of ten consecutive pulses.


Subject(s)
Lenses , Polymers/chemistry , Polymers/radiation effects , Signal Processing, Computer-Assisted/instrumentation , Equipment Design , Equipment Failure Analysis , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...