Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Biol Psychiatry Glob Open Sci ; 2(2): 153-166, 2022 Apr.
Article in English | MEDLINE | ID: mdl-36325163

ABSTRACT

Background: Repetitive transcranial magnetic stimulation (rTMS), a noninvasive neuromodulation technique, is an effective treatment for depression. However, few studies have used diffusion magnetic resonance imaging to investigate the longitudinal effects of rTMS on the abnormal brain white matter (WM) described in depression. Methods: In this study, we acquired diffusion magnetic resonance imaging from young adult male Sprague Dawley rats to investigate 1) the longitudinal effects of 10- and 1-Hz low-intensity rTMS (LI-rTMS) in healthy animals; 2) the effect of chronic restraint stress (CRS), an animal model of depression; and 3) the effect of 10 Hz LI-rTMS in CRS animals. Diffusion magnetic resonance imaging data were analyzed using tract-based spatial statistics and fixel-based analysis. Results: Similar changes in diffusion and kurtosis fractional anisotropy were induced by 10- and 1-Hz stimulation in healthy animals, although changes induced by 10-Hz stimulation were detected earlier than those following 1-Hz stimulation. Additionally, 10-Hz stimulation increased axial and mean kurtosis within the external capsule, suggesting that the two protocols may act via different underlying mechanisms. Brain maturation-related changes in WM, such as increased corpus callosum, fimbria, and external and internal capsule fiber cross-section, were compromised in CRS animals compared with healthy control animals and were rescued by 10-Hz LI-rTMS. Immunohistochemistry revealed increased myelination within the corpus callosum in LI-rTMS-treated CRS animals compared with those that received sham or no stimulation. Conclusions: Overall, decreased WM connectivity and integrity in the CRS model corroborate findings in patients experiencing depression with high anxiety, and the observed LI-rTMS-induced effects on WM structure suggest that LI-rTMS might rescue abnormal WM by increasing myelination.

2.
Front Oncol ; 12: 837234, 2022.
Article in English | MEDLINE | ID: mdl-35273916

ABSTRACT

Improving tumor access for drug delivery is challenging, particularly in poorly perfused tumors. The availability of functional tumor blood vessels for systemic access is vital to allow drugs or imaging agents to accumulate in the tumor parenchyma. We subjected mice engineered to develop hepatocellular carcinoma (HCC), to treatment with tumor necrosis factor alpha (TNFα) conjugated to a CSG peptide (CSGRRSSKC). CSG binds to the laminin-nidogen-1 complex of the extracellular matrix (ECM) in HCC. When produced as a recombinant fusion protein, the TNFα-CSG functions as an ECM depletion agent via an immune-mediated mechanism to improve tumor perfusion. Tumor perfusion in HCC was dramatically improved after daily intravenous (i.v.) injection of 5 µg TNFα-CSG for five consecutive days. Following treatment, we assessed the tumor accessibility to accumulate an imaging agent, superparamagnetic iron-oxide nanoparticles (IO-NP). Here, we compared the passive delivery of an i.v. dose of IO-NP in HCC following ECM depletion after TNFα-CSG treatment, to the intratumoral accumulation of a comparable dose of CSG-targeted IO-NP in HCC with intact ECM. Magnetic resonance imaging (MRI) T2-weighted scans and T2 relaxation times indicate that when the tumor ECM is intact, HCC was resistant to the intratumoral uptake of IO-NP, even when the particles were tagged with CSG peptide. In contrast, pre-treatment with TNFα-CSG resulted in the highest IO-NP accumulation in tumors. These findings suggest poorly perfused HCC may be resistant to molecular-targeted imaging agents including CSG-IO-NP. We demonstrate that specific ECM depletion using TNFα-CSG improves nanoparticle delivery into poorly perfused tumors such as HCC.

3.
Pharmaceutics ; 13(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34683956

ABSTRACT

Diagnostic imaging of aggressive cancer with a high stroma content may benefit from the use of imaging contrast agents targeted with peptides that have high binding affinity to the extracellular matrix (ECM). In this study, we report the use of superparamagnetic iron-oxide nanoparticles (IO-NP) conjugated to a nonapeptide, CSGRRSSKC (CSG), which specifically binds to the laminin-nidogen-1 complex in tumours. We show that CSG-IO-NP accumulate in tumours, predominantly in the tumour ECM, following intravenous injection into a murine model of pancreatic neuroendocrine tumour (PNET). In contrast, a control untargeted IO-NP consistently show poor tumour uptake, and IO-NP conjugated to a pentapeptide. CREKA that bind fibrin clots in blood vessels show restricted uptake in the angiogenic vessels of the tumours. CSG-IO-NP show three-fold higher intratumoral accumulation compared to CREKA-IO-NP. Magnetic resonance imaging (MRI) T2-weighted scans and T2 relaxation times indicate significant uptake of CSG-IO-NP irrespective of tumour size, whereas the uptake of CREKA-IO-NP is only consistent in small tumours of less than 3 mm in diameter. Larger tumours with significantly reduced tumour blood vessels show a lack of CREKA-IO-NP uptake. Our data suggest CSG-IO-NP are particularly useful for detecting stroma in early and advanced solid tumours.

4.
Neurochem Res ; 46(5): 1166-1176, 2021 May.
Article in English | MEDLINE | ID: mdl-33523394

ABSTRACT

Poly-arginine peptides R18 and R18D have previously been demonstrated to be neuroprotective in ischaemic stroke models. Here we examined the proteolytic stability and efficacy of R18 and R18D in reducing infarct core growth and preserving the ischaemic penumbra following middle cerebral artery occlusion (MCAO) in the Sprague Dawley rat. R18 (300 or 1000 nmol/kg), R18D (300 nmol/kg) or saline were administered intravenously 10 min after MCAO induced using a filament. Serial perfusion and diffusion-weighted MRI imaging was performed to measure changes in the infarct core and penumbra from time points between 45- and 225-min post-occlusion. Repeated measures analyses of infarct growth and penumbral tissue size were evaluated using generalised linear mixed models (GLMMs). R18D (300 nmol/kg) was most effective in slowing infarct core growth (46.8 mm3 reduction; p < 0.001) and preserving penumbral tissue (21.6% increase; p < 0.001), followed by R18 at the 300 nmol/kg dose (core: 29.5 mm3 reduction; p < 0.001, penumbra: 12.5% increase; p < 0.001). R18 at the 1000 nmol/kg dose had a significant impact in slowing core growth (19.5 mm3 reduction; p = 0.026), but only a modest impact on penumbral preservation (6.9% increase; p = 0.062). The in vitro anti-excitotoxic neuroprotective efficacy of R18D was also demonstrated to be unaffected when preincubated for 1-3 h or overnight, in a cell lysate prepared from dying neurons or with the proteolytic enzyme, plasmin, whereas the neuroprotective efficacy of R18 was significantly reduced after a 2-h incubation. These findings highlight the capacity of poly-arginine peptides to reduce infarct growth and preserve the ischaemic penumbra, and confirm the superior efficacy and proteolytic stability of R18D, which indicates that this peptide is likely to retain its neuroprotective properties when co-administered with alteplase during thrombolysis for acute ischaemic stroke.


Subject(s)
Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/therapeutic use , Peptides/therapeutic use , Animals , Brain/drug effects , Cells, Cultured , Fibrinolysin/metabolism , Male , Neuroprotective Agents/chemistry , Neuroprotective Agents/metabolism , Peptides/chemistry , Peptides/metabolism , Protein Stability , Rats, Sprague-Dawley , Stereoisomerism
5.
Neurosci Res ; 165: 26-37, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32464181

ABSTRACT

Resting-state functional MRI (rs-fMRI) is a task-free method of detecting spatially distinct brain regions with correlated activity, which form organised networks known as resting-state networks (RSNs). The two most widely used methods for analysing RSN connectivity are seed-based correlation analysis (SCA) and independent component analysis (ICA) but there is no established workflow of the optimal combination of analytical steps and how to execute them. Rodent rs-fMRI data from our previous longitudinal brain stimulation studies were used to investigate these two methods using FSL. Specifically, we examined: (1) RSN identification and group comparisons in ICA, (2) ICA-based denoising compared to nuisance signal regression in SCA, and (3) seed selection in SCA. In ICA, using a baseline-only template resulted in greater functional connectivity within RSNs and more sensitive detection of group differences than when an average pre/post stimulation template was used. In SCA, the use of an ICA-based denoising method in the preprocessing of rs-fMRI data and the use of seeds from individual functional connectivity maps in running group comparisons increased the sensitivity of detecting group differences by preventing the reduction in signals of interest. Accordingly, when analysing animal and human rs-fMRI data, we infer that the use of baseline-only templates in ICA and ICA-based denoising and individualised seeds in SCA will improve the reliability of results and comparability across rs-fMRI studies.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Brain/diagnostic imaging , Reproducibility of Results , Workflow
6.
J Musculoskelet Neuronal Interact ; 20(3): 332-338, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32877970

ABSTRACT

OBJECTIVE: Changes in body composition are a common feature of Huntington's disease (HD) and are associated with disease progression. However, whether these changes in body composition are associated with degeneration of the striatum is unknown. This study aimed to explore the associations between body composition metrics and striatal brain volume in individuals with premanifest HD and healthy controls. METHODS: Twenty-one individuals with premanifest HD and 22 healthy controls participated in this cross-sectional study. Body composition metrics were measured via dual-energy X-ray absorptiometry. Structural magnetic resonance imaging of subcortical structures of the brain was performed to evaluate striatal volume. RESULTS: There were no significant differences in body composition metrics between the premanifest HD and healthy controls group. Striatal volume was significantly reduced in individuals with premanifest HD compared to healthy controls. A significant association between bone mineral density (BMD) and right putamen volume was also observed in individuals with premanifest HD. CONCLUSION: These findings show striatal degeneration is evident during the premanifest stages of HD and associated with BMD. Additional longitudinal studies are nevertheless needed to confirm these findings.


Subject(s)
Body Composition , Brain/pathology , Huntington Disease/pathology , Absorptiometry, Photon , Adult , Aged , Bone Density/physiology , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size
7.
Ann Clin Transl Neurol ; 7(9): 1608-1619, 2020 09.
Article in English | MEDLINE | ID: mdl-32794343

ABSTRACT

BACKGROUND: Recent findings suggest that individuals with Huntington's disease (HD) have an impaired capacity to execute cognitive and motor tasks simultaneously, or dual task, which gradually worsens as the disease advances. The onset and neuropathological changes mediating impairments in dual tasking in individuals with HD are unclear. The reliability of dual tasking assessments for individuals with HD is also unclear. OBJECTIVES: To evaluate differences in dual tasking performance between individuals with HD (presymptomatic and prodromal) and matched controls, to investigate associations between striatal volume and dual tasking performance, and to determine the reliability of dual tasking assessments. METHODS: Twenty individuals with HD (10 presymptomatic and 10 prodromal) and 20 healthy controls were recruited for the study. Individuals undertook four single and dual task assessments, comprising motor (postural stability or force steadiness) and cognitive (simple or complex mental arithmetic) components, with single and dual tasks performed three times each. Participants also undertook a magnetic resonance imaging assessment. RESULTS: Compared to healthy controls, individuals with presymptomatic and prodromal HD displayed significant deficits in dual tasking, particularly cognitive task performance when concurrently undertaking motor tasks (P < 0.05). The observed deficits in dual tasking were associated with reduced volume in caudate and putamen structures (P < 0.05),however, not with clinical measures of disease burden. An analysis of the reliability of dual tasking assessments revealed moderate to high test-retest reliability [ICC: 0.61-0.99] for individuals with presymptomatic and prodromal HD and healthy controls. CONCLUSIONS: Individuals with presymptomatic and prodromal HD have significant deficits in dual tasking that are associated with striatal degeneration. Findings also indicate that dual tasking assessments are reliable in individuals presymptomatic and prodromal HD and healthy controls.


Subject(s)
Cognitive Dysfunction/physiopathology , Executive Function/physiology , Huntington Disease/pathology , Huntington Disease/physiopathology , Neostriatum/pathology , Postural Balance/physiology , Psychomotor Performance/physiology , Adult , Humans , Huntington Disease/complications , Magnetic Resonance Imaging , Male , Middle Aged , Neostriatum/diagnostic imaging , Prodromal Symptoms
8.
eNeuro ; 7(4)2020.
Article in English | MEDLINE | ID: mdl-32669346

ABSTRACT

Prior research suggests that the neurobiological underpinnings of depression include aberrant brain functional connectivity, neurometabolite levels, and hippocampal volume. Chronic restraint stress (CRS) depression model in rats has been shown to elicit behavioral, gene expression, protein, functional connectivity, and hippocampal volume changes similar to those in human depression. However, no study to date has examined the association between behavioral changes and brain changes within the same animals. This study specifically addressed the correlation between the outcomes of behavioral tests and multiple 9.4 T magnetic resonance imaging (MRI) modalities in the CRS model using data collected longitudinally in the same animals. CRS involved placing young adult male Sprague Dawley rats in individual transparent tubes for 2.5 h daily over 13 d. Elevated plus maze (EPM) and forced swim tests (FSTs) confirmed the presence of anxiety-like and depression-like behaviors, respectively, postrestraint. Resting-state functional MRI (rs-fMRI) data revealed hypoconnectivity within the salience and interoceptive networks and hyperconnectivity of several brain regions to the cingulate cortex. Proton magnetic resonance spectroscopy revealed decreased sensorimotor cortical glutamate (Glu), glutamine (Gln), and combined Glu-Gln (Glx) levels. Volumetric analysis of T2-weighted images revealed decreased hippocampal volume. Importantly, these changes parallel those found in human depression, suggesting that the CRS rodent model has utility for translational studies and novel intervention development for depression.


Subject(s)
Depression , Stress, Psychological , Animals , Depression/diagnostic imaging , Depression/etiology , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley , Restraint, Physical , Stress, Psychological/diagnostic imaging
9.
J Neurol Sci ; 416: 117022, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32688143

ABSTRACT

BACKGROUND: Huntington's disease (HD) is a chronic, progressive neurodegenerative condition for which there are currently no proven disease-modifying therapies. Lifestyle factors have been shown to impact on the age of disease onset and progression of disease features. We therefore investigated the effects of a nine-month multidisciplinary rehabilitation intervention on neuroimaging, biological and clinical disease outcomes in individuals with premanifest HD. METHODS: 31 individuals with premanifest HD participated in the study. Eighteen participants underwent a nine-month multidisciplinary rehabilitation intervention comprising aerobic and resistance exercise, computerised cognitive training, dual-task training and sleep hygiene and nutritional guidance. The remaining 13 participants were allocated to a standard care control group. Neuroimaging, biological, cognitive, motor and cardiorespiratory fitness data was collected. RESULTS: Participants displayed good adherence (87%) and compliance (85%) to the intervention. Maintenance of the shape of the right putamen was observed in the intervention group when compared to the control group. The intervention group displayed significant improvements in verbal learning and memory, attention, cognitive flexibility and processing speed following the intervention when compared to the control group. Performance on the mini-social cognition and emotional assessment (mini-SEA) was maintained in the intervention group, but decreased in the control group. No changes were observed in serum neurofilament light protein levels, postural stability outcomes or cardiorespiratory fitness. CONCLUSION: This study adds to the accumulating body of literature to suggest that multidisciplinary rehabilitation is of clinical benefit for individuals with HD. Large randomised controlled trials are necessary to determine the extent to which benefits occur across the spectrum of the disease.


Subject(s)
Cognition Disorders , Huntington Disease , Cognition , Humans , Huntington Disease/complications , Huntington Disease/diagnostic imaging , Huntington Disease/therapy , Neuroimaging
10.
Animals (Basel) ; 10(6)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570809

ABSTRACT

Anaesthetic protocols involving the combined use of a sedative agent, medetomidine, and an anaesthetic agent, isoflurane, are increasingly being used in functional magnetic resonance imaging (fMRI) studies of the rodent brain. Despite the popularity of this combination, a standardised protocol for the combined use of medetomidine and isoflurane has not been established, resulting in inconsistencies in the reported use of these drugs. This study investigated the pharmacokinetic detail required to standardise the use of medetomidine and isoflurane in rat brain fMRI studies. Using mass spectrometry, serum concentrations of medetomidine were determined in Sprague-Dawley rats during medetomidine and isoflurane anaesthesia. The serum concentration of medetomidine for administration with 0.5% (vapouriser setting) isoflurane was found to be 14.4 ng/mL (±3.0 ng/mL). The data suggests that a steady state serum concentration of medetomidine when administered with 0.5% (vapouriser setting) isoflurane can be achieved with an initial subcutaneous (SC) dose of 0.12 mg/kg of medetomidine followed by a 0.08 mg/kg/h SC infusion of medetomidine. Consideration of these results for future studies will facilitate standardisation of medetomidine and isoflurane anaesthetic protocols during fMRI data acquisition.

11.
Brain Sci ; 10(4)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260193

ABSTRACT

Postnatal glucocorticoids such as dexamethasone are effective in promoting lung development in preterm infants, but are prescribed cautiously due to concerns of neurological harm. We developed an analysis pipeline for post-mortem magnetic resonance imaging (MRI) to assess brain development and hence the neurological safety profile of postnatal dexamethasone in preterm lambs. Lambs were delivered via caesarean section at 129 days' (d) gestation (full term ≈ 150 d) with saline-vehicle control (Saline, n = 9), low-dose tapered dexamethasone (cumulative dose = 0.75 mg/kg, n = 8), or high-dose tapered dexamethasone (cumulative dose = 2.67 mg/kg, n = 8), for seven days. Naïve fetal lambs (136 d gestation) were used as end-point maturation controls. The left-brain hemispheres were immersion-fixed in 10 % formalin (24 h), followed by paraformaldehyde (>6 months). Image sequences were empirically optimized for T1- and T2-weighted MRI and analysed using accessible methods. Spontaneous lesions detected in the white matter of the frontal cortex, temporo-parietal cortex, occipital lobe, and deep to the parahippocampal gyrus were confirmed with histology. Neither postnatal dexamethasone treatment nor gestation showed any associations with lesion incidence, frontal cortex (total, white, or grey matter) or hippocampal volume (all p > 0.05). Postnatal dexamethasone did not appear to adversely affect neurodevelopment. Our post-mortem MRI analysis pipeline is suitable for other animal models of brain development.

12.
EMBO Mol Med ; 11(12): e10923, 2019 12.
Article in English | MEDLINE | ID: mdl-31709774

ABSTRACT

High extracellular matrix (ECM) content in solid cancers impairs tumour perfusion and thus access of imaging and therapeutic agents. We have devised a new approach to degrade tumour ECM, which improves uptake of circulating compounds. We target the immune-modulating cytokine, tumour necrosis factor alpha (TNFα), to tumours using a newly discovered peptide ligand referred to as CSG. This peptide binds to laminin-nidogen complexes in the ECM of mouse and human carcinomas with little or no peptide detected in normal tissues, and it selectively delivers a recombinant TNFα-CSG fusion protein to tumour ECM in tumour-bearing mice. Intravenously injected TNFα-CSG triggered robust immune cell infiltration in mouse tumours, particularly in the ECM-rich zones. The immune cell influx was accompanied by extensive ECM degradation, reduction in tumour stiffness, dilation of tumour blood vessels, improved perfusion and greater intratumoral uptake of the contrast agents gadoteridol and iron oxide nanoparticles. Suppressed tumour growth and prolonged survival of tumour-bearing mice were observed. These effects were attainable without the usually severe toxic side effects of TNFα.


Subject(s)
Extracellular Matrix/metabolism , Animals , Cell Line , Cell Surface Display Techniques , Contrast Media/metabolism , Female , Ferric Compounds/metabolism , Gadolinium/metabolism , Heterocyclic Compounds/metabolism , Humans , Male , Mice , Nanoparticles/metabolism , Organometallic Compounds/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
Brain Stimul ; 12(6): 1526-1536, 2019.
Article in English | MEDLINE | ID: mdl-31296402

ABSTRACT

BACKGROUND: Evidence suggests that repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, alters resting brain activity. Despite anecdotal evidence that rTMS effects wear off, there are no reports of longitudinal studies, even in humans, mapping the therapeutic duration of rTMS effects. OBJECTIVE: Here, we investigated the longitudinal effects of repeated low-intensity rTMS (LI-rTMS) on healthy rodent resting-state networks (RSNs) using resting-state functional MRI (rs-fMRI) and on sensorimotor cortical neurometabolite levels using proton magnetic resonance spectroscopy (MRS). METHODS: Sprague-Dawley rats received 10 min LI-rTMS daily for 15 days (10 Hz or 1 Hz stimulation, n = 9 per group). MRI data were acquired at baseline, after seven days and after 14 days of daily stimulation and at two more timepoints up to three weeks post-cessation of daily stimulation. RESULTS: 10 Hz stimulation increased RSN connectivity and GABA, glutamine, and glutamate levels. 1 Hz stimulation had opposite but subtler effects, resulting in decreased RSN connectivity and glutamine levels. The induced changes decreased to baseline levels within seven days following stimulation cessation in the 10 Hz group but were sustained for at least 14 days in the 1 Hz group. CONCLUSION: Overall, our study provides evidence of long-term frequency-specific effects of LI-rTMS. Additionally, the transient connectivity changes following 10 Hz stimulation suggest that current treatment protocols involving this frequency may require ongoing "top-up" stimulation sessions to maintain therapeutic effects.


Subject(s)
Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/metabolism , Transcranial Magnetic Stimulation/methods , Animals , Magnetic Resonance Imaging/trends , Male , Rats , Rats, Sprague-Dawley , Rest/physiology , Time Factors , Transcranial Magnetic Stimulation/trends
14.
Sci Rep ; 9(1): 10022, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31296954

ABSTRACT

In cartilaginous fishes, variability in the size of the brain and its major regions is often associated with primary habitat and/or specific behavior patterns, which may allow for predictions on the relative importance of different sensory modalities. The Greenland (Somniosus microcephalus) and Pacific sleeper (S. pacificus) sharks are the only non-lamnid shark species found in the Arctic and are among the longest living vertebrates ever described. Despite a presumed visual impairment caused by the regular presence of parasitic ocular lesions, coupled with the fact that locomotory muscle power is often depressed at cold temperatures, these sharks remain capable of capturing active prey, including pinnipeds. Using magnetic resonance imaging (MRI), brain organization of S. microcephalus and S. pacificus was assessed in the context of up to 117 other cartilaginous fish species, using phylogenetic comparative techniques. Notably, the region of the brain responsible for motor control (cerebellum) is small and lacking foliation, a characteristic not yet described for any other large-bodied (>3 m) shark. Further, the development of the optic tectum is relatively reduced, while olfactory brain regions are among the largest of any shark species described to date, suggestive of an olfactory-mediated rather than a visually-mediated lifestyle.


Subject(s)
Cerebellum/anatomy & histology , Olfactory Cortex/anatomy & histology , Sharks/anatomy & histology , Sharks/physiology , Superior Colliculi/anatomy & histology , Animals , Brain/anatomy & histology , Brain/physiology , Cerebellum/physiology , Feeding Behavior/physiology , Greenland , Magnetic Resonance Imaging , Olfactory Cortex/physiology , Phylogeny , Superior Colliculi/physiology , Vision Disorders/parasitology
15.
Article in English | MEDLINE | ID: mdl-31236517

ABSTRACT

OBJECTIVE: Pathological changes within the hypothalamus have been proposed to mediate circadian rhythm and habitual sleep disturbances in individuals with Huntington's disease (HD). However, investigations examining the relationships between hypothalamic volume and circadian rhythm and habitual sleep in individuals with HD are sparse. This study aimed to comprehensively evaluate the relationships between hypothalamic pathology and circadian rhythm and habitual sleep disturbances in individuals with premanifest HD. METHODS: Thirty-two individuals with premanifest HD and twenty-nine healthy age- and gender-matched controls participated in this dual-site, cross-sectional study. Magnetic resonance imaging scans were performed to evaluate hypothalamic volume. Circadian rhythm and habitual sleep were assessed via measurement of morning and evening cortisol and melatonin levels, wrist-worn actigraphy, the Consensus Sleep Diary and sleep questionnaires. Information on mood, physical activity levels and body composition were also collected. RESULTS: Compared to healthy controls, individuals with premanifest HD displayed significantly reduced grey matter volume in the hypothalamus, decreased habitual sleep efficiency and increased awakenings; however, no alterations in morning cortisol or evening melatonin release were noted in individuals with premanifest HD. While differences in the associations between hypothalamic volume and cortisol and melatonin output existed in individuals with premanifest HD compared to healthy controls, no consistent associations were observed between hypothalamic volume and circadian rhythm or habitual sleep outcomes. CONCLUSION: While significant differences in associations between hypothalamic volume and cortisol and melatonin existed between individuals with premanifest HD and healthy controls, no differences in circadian markers were observed between the groups. This suggests that circadian regulation is maintained despite hypothalamic pathology, perhaps via neural compensation. Longitudinal studies are required to further understand the relationships between the hypothalamus and circadian rhythm and habitual sleep disturbances in HD as the disease course lengthens.

16.
Sci Rep ; 8(1): 6706, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29712947

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique used to treat many neuropsychiatric conditions. However, the mechanisms underlying its mode of action are still unclear. This is the first rodent study using resting-state functional MRI (rs-fMRI) to examine low-intensity (LI) rTMS effects, in an effort to provide a direct means of comparison between rodent and human studies. Using anaesthetised Sprague-Dawley rats, rs-fMRI data were acquired before and after control or LI-rTMS at 1 Hz, 10 Hz, continuous theta burst stimulation (cTBS) or biomimetic high-frequency stimulation (BHFS). Independent component analysis revealed LI-rTMS-induced changes in the resting-state networks (RSN): (i) in the somatosensory cortex, the synchrony of resting activity decreased ipsilaterally following 10 Hz and bilaterally following 1 Hz stimulation and BHFS, and increased ipsilaterally following cTBS; (ii) the motor cortex showed bilateral changes following 1 Hz and 10 Hz stimulation, a contralateral decrease in synchrony following BHFS, and an ipsilateral increase following cTBS; and (iii) hippocampal synchrony decreased ipsilaterally following 10 Hz, and bilaterally following 1 Hz stimulation and BHFS. The present findings demonstrate that LI-rTMS modulates functional links within the rat RSN with frequency-specific outcomes, and the observed changes are similar to those described in humans following rTMS.


Subject(s)
Magnetic Resonance Imaging/methods , Membrane Potentials/physiology , Motor Cortex/radiation effects , Animals , Brain Mapping , Evoked Potentials, Motor/physiology , Evoked Potentials, Motor/radiation effects , Humans , Membrane Potentials/radiation effects , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Rats , Rats, Sprague-Dawley , Transcranial Magnetic Stimulation/adverse effects
17.
Front Neurosci ; 12: 180, 2018.
Article in English | MEDLINE | ID: mdl-29628873

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique, which has brain network-level effects in healthy individuals and is also used to treat many neurological and psychiatric conditions in which brain connectivity is believed to be abnormal. Despite the fact that rTMS is being used in a clinical setting and animal studies are increasingly identifying potential cellular and molecular mechanisms, little is known about how these mechanisms relate to clinical changes. This knowledge gap is amplified by non-overlapping approaches used in preclinical and clinical rTMS studies: preclinical studies are mostly invasive, using cellular and molecular approaches, while clinical studies are non-invasive, including functional magnetic resonance imaging (fMRI), TMS electroencephalography (EEG), positron emission tomography (PET), and behavioral measures. A non-invasive method is therefore needed in rodents to link our understanding of cellular and molecular changes to functional connectivity changes that are clinically relevant. fMRI is the technique of choice for examining both short and long term functional connectivity changes in large-scale networks and is becoming increasingly popular in animal research because of its high translatability, but, to date, there have been no reports of animal rTMS studies using this technique. This review summarizes the main studies combining different rTMS protocols with fMRI in humans, in both healthy and patient populations, providing a foundation for the design of equivalent studies in animals. We discuss the challenges of combining these two methods in animals and highlight considerations important for acquiring clinically-relevant information from combined rTMS/fMRI studies in animals. We believe that combining rTMS and fMRI in animal models will generate new knowledge in the following ways: functional connectivity changes can be explored in greater detail through complementary invasive procedures, clarifying mechanism and improving the therapeutic application of rTMS, as well as improving interpretation of fMRI data. And, in a more general context, a robust comparative approach will refine the use of animal models of specific neuropsychiatric conditions.

18.
J Endocrinol ; 237(2): 73-85, 2018 05.
Article in English | MEDLINE | ID: mdl-29559544

ABSTRACT

Early life vitamin D plays a prominent role in neurodevelopment and subsequent brain function, including schizophrenic-like outcomes and increasing evidence for an association with autism spectrum disorder (ASD). Here, we investigate how early life vitamin D deficiency during rat pregnancy and lactation alters maternal care and influences neurodevelopment and affective, cognitive and social behaviours in male adult offspring. Sprague-Dawley rats were placed on either a vitamin D control (2195 IU/kg) or deficient diet (0 IU/kg) for five weeks before timed mating, and diet exposure was maintained until weaning of offspring on postnatal day (PND) 23. MRI scans were conducted to assess brain morphology, and plasma corticosterone levels and neural expression of genes associated with language, dopamine and glucocorticoid exposure were characterised at PND1, PND12 and 4 months of age. Compared to controls, vitamin D-deficient dams exhibited decreased licking and grooming of their pups but no differences in pup retrieval. Offspring neurodevelopmental markers were unaltered, but vitamin D-deficient pup ultrasonic vocalisations were atypical. As adults, males that had been exposed to vitamin D deficiency in early life exhibited decreased social behaviour, impaired learning and memory outcomes and increased grooming behaviour, but unaltered affective behaviours. Accompanying these behavioural changes was an increase in lateral ventricle volume, decreased cortical FOXP2 (a protein implicated in language and communication) and altered neural expression of genes involved in dopamine and glucocorticoid-related pathways. These data highlight that early life levels of vitamin D are an important consideration for maternal behavioural adaptations as well as offspring neuropsychiatry.


Subject(s)
Behavior, Animal , Maternal Behavior/physiology , Prenatal Exposure Delayed Effects , Social Behavior , Vitamin D/physiology , Animals , Behavior, Animal/drug effects , Female , Lactation/drug effects , Lactation/physiology , Male , Maternal Behavior/drug effects , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Prenatal Exposure Delayed Effects/psychology , Rats , Rats, Sprague-Dawley , Vitamin D/pharmacology , Vitamin D Deficiency/complications , Vitamin D Deficiency/pathology , Vitamin D Deficiency/physiopathology
19.
J Neurosci Methods ; 288: 62-71, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28648719

ABSTRACT

BACKGROUND: The Rice-Vannucci model of hypoxic-ischaemic encephalopathy (HIE) has been associated with a high degree of variability with respect to the development of cerebral infarction and infarct lesion volume. For this reason, we examined the occurrence of communicational blood flow within the common carotid (CCA), internal (ICA), and external (ECA) carotid arteries following CCA occlusion as a source of variability in the model. NEW METHOD: We propose a novel modification to the Rice-Vannucci model, whereby both the CCA and ECA are permanently ligated; mitigating communicational blood flow. RESULTS: Using magnetic resonance angiography, phase-contrast velocity encoding, and pulsed arterial spin labelling, the modified Rice-Vannucci model (CCA/ECA occlusion) was demonstrated to mitigate communicational blood flow, whilst significantly reducing ipsilateral hemispherical cerebral blood flow (CBF). Comparatively, the original Rice-Vannucci model (CCA occlusion) demonstrated anterograde and retrograde blood flow within the ICA and CCA, respectively, with a non-significant reduction in ipsilateral CBF. Furthermore, CCA/ECA occlusion plus hypoxia (8% O2/92% N2; 2.5h) resulted in 100% of animals presenting with an infarct (vs 87%), significantly larger infarct volume at 48h (18.5% versus 10.0%; p<0.01), reduced standard deviation (±10% versus ±15%), and significantly worsened functional outcomes when compared to CCA occlusion plus hypoxia. COMPARISON WITH EXISTING METHOD: We compared a modified Rice-Vannucci model (CCA/ECA occlusion±hypoxia) to the commonly used Rice-Vannucci model (CCA occlusion±hypoxia). CONCLUSION: This study demonstrates that CCA/ECA occlusion in the Rice-Vannucci model of HIE reduces infarct volume variability by limiting communicational blood flow.


Subject(s)
Cerebral Infarction/etiology , Disease Models, Animal , Hypoxia-Ischemia, Brain/complications , Animals , Animals, Newborn , Carotid Artery, Common , Carotid Artery, Internal/physiopathology , Cerebrovascular Circulation/physiology , Disease Progression , Magnetic Resonance Imaging , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Time Factors
20.
Magn Reson Chem ; 54(6): 429-36, 2016 Jun.
Article in English | MEDLINE | ID: mdl-25589470

ABSTRACT

Over the previous three decades, the use of MRI for studying dynamic physical and chemical processes of materials systems has grown significantly. This mini-review provides a brief introduction to relevant principles of MRI, including methods of spatial localization, factors contributing to image contrast, and chemical shift imaging. A few historical examples of (1) H MRI for reaction monitoring will be presented, followed by a review of recent research including (1) H MRI studies of gelation and biofilms, (1) H, (7) Li, and (11) B MRI studies of electrochemical systems, in vivo glucose metabolism monitored with (19) F MRI, and in situ temperature monitoring with (27) Al MRI. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Chemistry/methods , Magnetic Resonance Imaging/methods , Electrochemistry , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...