Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 13(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34959466

ABSTRACT

Antibiotic resistance is a global health threat. There are a few antibiotics under development, and even fewer with new modes of action and no cross-resistance to established antibiotics. Accordingly, reformulation of old antibiotics to overcome resistance is attractive. Nano-mupirocin is a PEGylated nano-liposomal formulation of mupirocin, potentially enabling parenteral use in deep infections, as previously demonstrated in several animal models. Here, we describe extensive in vitro profiling of mupirocin and Nano-mupirocin and correlate the resulting MIC data with the pharmacokinetic profiles seen for Nano-mupirocin in a rat model. Nano-mupirocin showed no cross-resistance with other antibiotics and retained full activity against vancomycin-, daptomycin-, linezolid- and methicillin- resistant Staphylococcus aureus, against vancomycin-resistant Enterococcus faecium, and cephalosporin-resistant Neisseria gonorrhoeae. Following Nano-mupirocin injection to rats, plasma levels greatly exceeded relevant MICs for >24 h, and a biodistribution study in mice showed that mupirocin concentrations in vaginal secretions greatly exceeded the MIC90 for N. gonorrhoeae (0.03 µg/mL) for >24 h. In summary, Nano-mupirocin has excellent potential for treatment of several infection types involving multiresistant bacteria. It has the concomitant benefits from utilizing an established antibiotic and liposomes of the same size and lipid composition as Doxil®, an anticancer drug product now used for the treatment of over 700,000 patients globally.

2.
Biosci Rep ; 39(1)2019 01 31.
Article in English | MEDLINE | ID: mdl-30602451

ABSTRACT

This work tests bioenergetic and cell-biological implications of the synthetic fatty acid Minerval (2-hydroxyoleic acid), previously demonstrated to act by activation of sphingomyelin synthase in the plasma membrane (PM) and lowering of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) and their carcinogenic signaling. We show here that Minerval also acts, selectively in cancer cell lines, as an ATP depleting uncoupler of mitochondrial oxidative phosphorylation (OxPhos). As a function of its exposure time, Minerval compromised the capacity of glioblastoma U87-MG cells to compensate for aberrant respiration by up-modulation of glycolysis. This effect was not exposure time-dependent in the lung carcinoma A549 cell line, which was more sensitive to Minerval. Compared with OxPhos inhibitors FCCP (uncoupler), rotenone (electron transfer inhibitor), and oligomycin (F1F0-ATPase inhibitor), Minerval action was similar only to that of FCCP. This similarity was manifested by mitochondrial membrane potential (MMP) depolarization, facilitation of oxygen consumption rate (OCR), restriction of mitochondrial and cellular reactive oxygen species (ROS) generation and mitochondrial fragmentation. Additionally, compared with other OxPhos inhibitors, Minerval uniquely induced ER stress in cancer cell lines. These new modes of action for Minerval, capitalizing on the high fatty acid requirements of cancer cells, can potentially enhance its cancer-selective toxicity and improve its therapeutic capacity.


Subject(s)
Energy Metabolism/drug effects , Lung Neoplasms/drug therapy , Oleic Acids/pharmacology , A549 Cells , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Respiration/drug effects , Electron Transport/drug effects , Glycolysis/drug effects , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mitochondria/drug effects , Mitochondria/pathology , Oxidative Phosphorylation/drug effects , Oxygen Consumption/drug effects , Signal Transduction/drug effects
3.
Dev Cell ; 19(1): 160-73, 2010 Jul 20.
Article in English | MEDLINE | ID: mdl-20643358

ABSTRACT

Caspases are executioners of apoptosis but also participate in a variety of vital cellular processes. Here, we identified Soti, an inhibitor of the Cullin-3-based E3 ubiquitin ligase complex required for caspase activation during Drosophila spermatid terminal differentiation (individualization). We further provide evidence that the giant inhibitor of apoptosis-like protein dBruce is a target for the Cullin-3-based complex, and that Soti competes with dBruce for binding to Klhl10, the E3 substrate recruitment subunit. We then demonstrate that Soti is expressed in a subcellular gradient within spermatids and in turn promotes proper formation of a similar dBruce gradient. Consequently, caspase activation occurs in an inverse graded fashion, such that the regions of the developing spermatid that are the last to individualize experience the lowest levels of activated caspases. These findings elucidate how the spatial regulation of caspase activation can permit caspase-dependent differentiation while preventing full-blown apoptosis.


Subject(s)
Caspase Inhibitors , Spermatids/cytology , Spermatids/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Animals , Apoptosis/physiology , Cell Differentiation/physiology , Cullin Proteins/genetics , Cullin Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Enzyme Inhibitors/metabolism , Genes, Insect , Male , Models, Biological , Mutation , Saccharomyces cerevisiae/metabolism , Spermatogenesis/genetics , Spermatogenesis/physiology
4.
Apoptosis ; 14(8): 980-95, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19373560

ABSTRACT

Since the pioneering discovery that the genetic cell death program in C. elegans is executed by the cysteine-aspartate protease (caspase) CED3, caspase activation has become nearly synonymous with apoptosis. A critical mass of data accumulated in the past few years, have clearly established that apoptotic caspases can also participate in a variety of non-apoptotic processes. The roles of caspases during these processes and the regulatory mechanisms that prevent unrestrained caspase activity remain to be fully investigated, and may vary in different cellular contexts. Significantly, some of these processes, such as terminal differentiation of vertebrate lens fiber cells and red blood cells, as well as spermatid terminal differentiation and dendritic pruning of sensory neurons in Drosophila, all involve proteolytic degradation of major cellular compartments, and are conceptually, molecularly, biochemically, and morphologically reminiscent of apoptosis. Moreover, some of these model systems bear added values for the study of caspase activation/apoptosis. For example, the Drosophila sperm differentiation is the only system known in invertebrate which absolutely requires the mitochondrial pathway (i.e. Cyt c). The existence of testis-specific genes for many of the components in the electron transport chain, including Cyt c, facilitates the use of the Drosophila sperm system to investigate possible roles of these otherwise essential proteins in caspase activation. Caspases are also involved in a wide range of other vital processes of non-degenerative nature, indicating that these proteases play much more diverse roles than previously assumed. In this essay, we review genetic, cytological, and molecular studies conducted in Drosophila, vertebrate, and cultured cells, which underlie the foundations of this newly emerging field.


Subject(s)
Caspases/metabolism , Animals , Apoptosis , Cell Differentiation , Cell Survival , Humans , Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...