Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Appl Opt ; 58(10): 2490-2499, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31045043

ABSTRACT

A series of controlled grinding experiments, utilizing loose or fixed abrasives of either alumina or diamond at various particle sizes, were performed on a wide range of optical workpiece materials [single crystals of Al2O3 (sapphire), SiC, Y3Al5O12 (YAG), CaF2, and LiB3O5 (LBO); a SiO2-Al2O3-P2O5-Li2O glass ceramic (Zerodur); and glasses of SiO2:TiO2 (ULE), SiO2 (fused silica), and P2O5-Al2O3-K2O-BaO (phosphate)]. The material removal rate, surface roughness, and morphology of surface fractures were measured. Separately, Vickers indentation was performed on the workpieces, and the depths of various crack types as a function of applied load was measured. Single pass grinding experiments showed distinct differences in the spatial pattern of surface fracturing between the loose alumina abrasive (isolated indent-type lateral cracking) and the loose or fixed diamond abrasive (scratch-type elongated lateral cracking). Each of the grinding methods had a removal rate and roughness that scaled with the lateral crack slope, s ℓ (i.e., the rate of increase in lateral crack depth with the applied load) of the workpiece material. A grinding model (based on the volumetric removal of lateral cracks accounting for neighboring lateral crack removal efficiency and the fraction of abrasive particles leading to fracture initiation) and a roughness model (based on the depth of lateral cracks or the interface gap between the workpiece and lap) are shown to quantitatively describe the material removal rate and roughness as a function of workpiece material, abrasive size, applied pressure, and relative velocity. This broad, multiprocess variable grinding model can serve as a predictive tool for estimating grinding rates and surface roughness for various grinding processes on different workpiece materials.

2.
J Vis Exp ; (94)2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25489745

ABSTRACT

Convergent Polishing is a novel polishing system and method for finishing flat and spherical glass optics in which a workpiece, independent of its initial shape (i.e., surface figure), will converge to final surface figure with excellent surface quality under a fixed, unchanging set of polishing parameters in a single polishing iteration. In contrast, conventional full aperture polishing methods require multiple, often long, iterative cycles involving polishing, metrology and process changes to achieve the desired surface figure. The Convergent Polishing process is based on the concept of workpiece-lap height mismatch resulting in pressure differential that decreases with removal and results in the workpiece converging to the shape of the lap. The successful implementation of the Convergent Polishing process is a result of the combination of a number of technologies to remove all sources of non-uniform spatial material removal (except for workpiece-lap mismatch) for surface figure convergence and to reduce the number of rogue particles in the system for low scratch densities and low roughness. The Convergent Polishing process has been demonstrated for the fabrication of both flats and spheres of various shapes, sizes, and aspect ratios on various glass materials. The practical impact is that high quality optical components can be fabricated more rapidly, more repeatedly, with less metrology, and with less labor, resulting in lower unit costs. In this study, the Convergent Polishing protocol is specifically described for fabricating 26.5 cm square fused silica flats from a fine ground surface to a polished ~λ/2 surface figure after polishing 4 hr per surface on a 81 cm diameter polisher.


Subject(s)
Optics and Photonics/methods , Glass/chemistry , Optics and Photonics/instrumentation , Rheology/instrumentation , Rheology/methods
3.
Opt Express ; 21(4): 4854-63, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23482019

ABSTRACT

The self-focusing characteristic of 355 nm, 3.3 ns pulses propagating through phosphate glass samples is found to significantly change during repeated exposure. The results indicate this change is related to the formation of color centers in the material as well as the generation of a transient defect population during exposure to the laser pulses. A model is used to fit the experimental data and obtain an estimated range of values for the modified linear and nonlinear indices of refraction.


Subject(s)
Glass/chemistry , Glass/radiation effects , Lasers , Lenses , Phosphates/chemistry , Phosphates/radiation effects , Materials Testing , Ultraviolet Rays
4.
Appl Opt ; 51(35): 8350-9, 2012 Dec 10.
Article in English | MEDLINE | ID: mdl-23262529

ABSTRACT

Pitch button blocking (PBB), involving attaching small pitch buttons between the back of a thin workpiece (i.e., optic) and a blocking plate, enables noncompliant convergent polishing in which the workpiece stiffness and block interface strength are maintained. This process has been optimized, and practical design criteria (number, size, and spacing of pitch buttons) have been determined both experimentally and theoretically using a thermoelastic model. The optimized PBB process has been successfully implemented on 100-265 mm sized workpieces with aspect ratios up to 45, resulting in maximum peak-to-valley heights of <|0.1| µm after blocking and polishing.

5.
Opt Express ; 20(25): 27708-24, 2012 Dec 03.
Article in English | MEDLINE | ID: mdl-23262718

ABSTRACT

The light emission produced near the surface of fused silica following laser-induced breakdown on the exit surface was spatially and spectrally resolved. This signal is in part generated by ejected particles while traveling outside the hot ionized region. The thermal emission produced by the particles can be separated from the plasma emission near the surface and its spectral characteristics provide information on the temperature of the particles after ejection from the surface. Assuming the emission is thermal in origin, data suggest an initial average temperature on the order of at least 0.5 eV.


Subject(s)
Fiber Optic Technology/methods , Lasers , Light , Microtechnology/methods , Silicon Dioxide/chemistry , Temperature , Computer Simulation , Equipment Design , Fiber Optic Technology/instrumentation , Microtechnology/instrumentation , Models, Theoretical , Surface Properties
6.
Opt Express ; 20(10): 11561-73, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22565775

ABSTRACT

Surface laser damage limits the lifetime of optics for systems guiding high fluence pulses, particularly damage in silica optics used for inertial confinement fusion-class lasers (nanosecond-scale high energy pulses at 355 nm/3.5 eV). The density of damage precursors at low fluence has been measured using large beams (1-3 cm); higher fluences cannot be measured easily since the high density of resulting damage initiation sites results in clustering. We developed automated experiments and analysis that allow us to damage test thousands of sites with small beams (10-30 µm), and automatically image the test sites to determine if laser damage occurred. We developed an analysis method that provides a rigorous connection between these small beam damage test results of damage probability versus laser pulse energy and the large beam damage results of damage precursor densities versus fluence. We find that for uncoated and coated fused silica samples, the distribution of precursors nearly flattens at very high fluences, up to 150 J/cm2, providing important constraints on the physical distribution and nature of these precursors.


Subject(s)
Optics and Photonics , Algorithms , Automation , Computer Simulation , Equipment Design , Lasers , Likelihood Functions , Models, Statistical , Phase Transition , Poisson Distribution , Reproducibility of Results , Silicon Dioxide/chemistry , Surface Properties
7.
Appl Opt ; 50(9): C373-81, 2011 Mar 20.
Article in English | MEDLINE | ID: mdl-21460967

ABSTRACT

Growing laser damage sites on multilayer high-reflector coatings can limit mirror performance. One of the strategies to improve laser damage resistance is to replace the growing damage sites with predesigned benign mitigation structures. By mitigating the weakest site on the optic, the large-aperture mirror will have a laser resistance comparable to the intrinsic value of the multilayer coating. To determine the optimal mitigation geometry, the finite-difference time-domain method was used to quantify the electric-field intensification within the multilayer, at the presence of different conical pits. We find that the field intensification induced by the mitigation pit is strongly dependent on the polarization and the angle of incidence (AOI) of the incoming wave. Therefore, the optimal mitigation conical pit geometry is application specific. Furthermore, our simulation also illustrates an alternative means to achieve an optimal mitigation structure by matching the cone angle of the structure with the AOI of the incoming wave, except for the p-polarized wave at a range of incident angles between 30° and 45°.

8.
Opt Express ; 18(13): 13788-804, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20588512

ABSTRACT

Laser-induced damage at near operational laser excitation conditions can limit the performance of potassium dihydrogen phosphate (KH(2)PO(4), or KDP) and its deuterated analog (DKDP) which are currently the only nonlinear optical materials suitable for use in large-aperture laser systems. This process has been attributed to pre-existing damage precursors that were incorporated or formed during growth that have not yet been identified. In this work, we present a novel experimental approach to probe the electronic structure of the damage precursors. The results are modeled assuming a multi-level electronic structure that includes a bottleneck for 532 nm excitation. This model reproduces our experimental observations as well as other well-documented behaviors of laser damage in KDP crystals. Comparison of the electronic structure of known defects in KDP with this model allows for identification of a specific class that we postulate may be the constituent defects in the damage precursors. The experimental results also provide evidence regarding the physical parameters affecting the ability of individual damage precursors to initiate damage, such as their size and defect density; these parameters were found to vary significantly between KDP materials that exhibit different damage performance characteristics.


Subject(s)
Fiber Optic Technology/methods , Lasers , Optics and Photonics/instrumentation , Phosphates/chemistry , Potassium Compounds/chemistry , Quantum Dots , Artifacts , Equipment Design , Equipment Failure , Fiber Optic Technology/instrumentation , Models, Theoretical , Nanoparticles , Nonlinear Dynamics
9.
Appl Opt ; 45(7): 1594-601, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16539268

ABSTRACT

The initiation of laser damage within optical coatings can be better understood by electric-field modeling of coating defects. The result of this modeling shows that light intensification as large as 24x can occur owing to these coating defects. Light intensification tends to increase with inclusion diameter. Defects irradiated over a range of incident angles from 0 to 60 deg tend to have a higher light intensification at a 45 deg incidence. Irradiation wavelength has a significant effect on light intensification within the defect and the multilayer. Finally, shallow, or in the case of 45 deg irradiation, deeply embedded inclusions tend to have the highest light intensification.

10.
Appl Opt ; 42(27): 5483-95, 2003 Sep 20.
Article in English | MEDLINE | ID: mdl-14526835

ABSTRACT

Laser-induced pinpoint bulk damage of deuterated potassium dihydrogen phosphate at 351 nm is shown to depend on the propagation direction relative to the crystallographic axes and on growth temperature in addition to the previously reported dependence on continuous filtration. Pulse-length scaling is also consistent with earlier reports. The leading hypothesis for the cause of pinpoint damage is absorbing nanoparticle impurities, and our results are consistent with but not conclusive for that model. Advances in technology have led to greatly improved damage resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...