Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(3): 1518-1523, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36626573

ABSTRACT

Differentiation of enantiomers represents an important research area for pharmaceutical, chemical, and food industries. However, enantiomer separation is a laborious task that demands complex analytical techniques, specialized equipment, and expert personnel. In this respect, discrimination and quantification of d- and l-α-amino acids is no exception, generally requiring extensive sample manipulation, including isolation, functionalization, and chiral separation. This complex sample treatment results in high time costs and potential biases in the quantitative determination. Here, we present an approach based on the combination of non-hydrogenative parahydrogen-induced hyperpolarization and nuclear magnetic resonance that allows detection, discrimination, and quantification of d- and l-α-amino acids in complex mixtures such as biofluids and food extracts down to submicromolar concentrations. Importantly, this method can be directly applied to the system under investigation without any prior isolation, fractionation, or functionalization step.


Subject(s)
Amino Acids , Magnetic Resonance Imaging , Amino Acids/chemistry , Magnetic Resonance Spectroscopy/methods , Stereoisomerism
2.
Acc Chem Res ; 55(13): 1832-1844, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35709417

ABSTRACT

Nuclear magnetic resonance (NMR) is a powerful technique for chemical analysis. The use of NMR to investigate dilute analytes in complex systems is, however, hampered by its relatively low sensitivity. An additional obstacle is represented by the NMR signal overlap. Because solutes in a complex mixture are usually not isotopically labeled, NMR studies are often limited to 1H measurements, which, because of the modest dispersion of the 1H resonances (typically ∼10 ppm), can result in challenging signal crowding. The low NMR sensitivity issue can be alleviated by nuclear spin hyperpolarization (i.e., transiently increasing the differences in nuclear spin populations), which determines large NMR signal enhancements. This has been demonstrated for hyperpolarization methods such as dynamic nuclear polarization, spin-exchange optical pumping and para-hydrogen-induced polarization (PHIP). In particular, PHIP has grown into a fast, efficient, and versatile technique since the recent discovery of non-hydrogenative routes to achieve nuclear spin hyperpolarization.For instance, signal amplification by reversible exchange (SABRE) can generate proton as well as heteronuclear spin hyperpolarization in a few seconds in compounds that are able to transiently bind to an iridium catalyst in the presence of para-hydrogen in solution. The hyperpolarization transfer catalyst acts as a chemosensor in the sense that it is selective for analytes that can coordinate to the metal center, such as nitrogen-containing aromatic heterocycles, sulfur heteroaromatic compounds, nitriles, Schiff bases, diaziridines, carboxylic acids, and amines. We have demonstrated that the signal enhancement achieved by SABRE allows rapid NMR detection and quantification of a mixture of substrates down to low-micromolar concentration. Furthermore, in the transient complex, the spin configuration of p-H2 can be easily converted to spin hyperpolarization to produce up to 1000-fold enhanced NMR hydride signals. Because the hydrides' chemical shifts are highly sensitive to the structure of the analyte associating with the iridium complex, they can be employed as hyperpolarized "probes" to signal the presence of specific compounds in the mixture. This indirect detection of the analytes in solution provides important benefits in the case of complex systems, as hydrides resonate in a region of the 1H spectrum (at ca. -20 ppm) that is generally signal-free. The enhanced sensitivity provided by non-hydrogenative PHIP (nhPHIP), together with the absence of interference from the complex matrix (usually resonating between 0 and 10 ppm), set the detection limit for this NMR chemosensor down to sub-µM concentrations, approximately 3 orders of magnitude lower than for conventional NMR. This nhPHIP approach represents, therefore, a powerful tool for NMR analysis of dilute substrates in complex mixtures as it addresses at once the issues of signal crowding and NMR sensitivity. Importantly, being performed at high field inside the NMR spectrometer, the method allows for rapid acquisition of multiple scans, multidimensional hyperpolarized NMR spectra, in a fashion comparable to that of standard NMR measurements.In this Account, we focus on our chemosensing NMR technology, detailing its principles, advantages, and limitations and presenting a number of applications to real systems such as biofluids, beverages, and natural extracts.


Subject(s)
Hydrogen , Iridium , Complex Mixtures , Hydrogen/chemistry , Iridium/chemistry , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Protons
3.
Molecules ; 27(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35630694

ABSTRACT

Dengue is an important arboviral infectious disease for which there is currently no specific cure. We report gemini-like (geminoid) alkylated amphiphilic peptides containing lysines in combination with glycines or alanines (C15H31C(O)-Lys-(Gly or Ala)nLys-NHC16H33, shorthand notation C16-KXnK-C16 with X = A or G, and n = 0-2). The representatives with 1 or 2 Ala inhibit dengue protease and human furin, two serine proteases involved in dengue virus infection that have peptides with cationic amino acids as their preferred substrates, with IC50 values in the lower µM range. The geminoid C16-KAK-C16 combined inhibition of DENV2 protease (IC50 2.3 µM) with efficacy against replication of wildtype DENV2 in LLC-MK2 cells (EC50 4.1 µM) and an absence of toxicity. We conclude that the lysine-based geminoids have activity against dengue virus infection, which is based on their inhibition of the proteases involved in viral replication and are therefore promising leads to further developing antiviral therapeutics, not limited to dengue.


Subject(s)
Antiviral Agents , Dengue Virus , Furin , Protease Inhibitors , Virus Replication , Antiviral Agents/pharmacology , Dengue/drug therapy , Dengue Virus/drug effects , Dengue Virus/physiology , Furin/antagonists & inhibitors , Humans , Peptide Hydrolases , Peptides/pharmacology , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
4.
Angew Chem Int Ed Engl ; 60(52): 26954-26959, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34534406

ABSTRACT

The scope of non-hydrogenative parahydrogen hyperpolarization (nhPHIP) techniques has been expanding over the last years, with the continuous addition of important classes of substrates. For example, pyruvate can now be hyperpolarized using the Signal Amplification By Reversible Exchange (SABRE) technique, offering a fast, efficient and low-cost PHIP alternative to Dynamic Nuclear Polarization for metabolic imaging studies. Still, important biomolecules such as amino acids have so far resisted PHIP, unless properly functionalized. Here, we report on an approach to nhPHIP for unmodified α-amino acids that allows their detection and quantification in complex mixtures at sub-micromolar concentrations. This method was tested on human urine, in which natural α-amino acids could be measured after dilution with methanol without any additional sample treatment.


Subject(s)
Amino Acids/urine , Magnetic Resonance Spectroscopy/methods , Amino Acids/chemistry , Catalysis , Coordination Complexes/chemistry , Humans , Hydrogen/chemistry , Iridium/chemistry
5.
Anal Chem ; 91(20): 12636-12643, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31508941

ABSTRACT

We present a novel setup that can be used for the in-line monitoring of solid-catalyzed gas-liquid reactions. The method combines the high sensitivity and resolution of a stripline NMR detector with a microfluidic network that can withstand elevated pressures. In our setup we dissolve hydrogen gas in the solvent, then flow it with the added substrate through a catalyst cartridge, and finally flow the reaction mixture directly through the stripline NMR detector. The method is quantitative and can be used to determine the solubility of hydrogen gas in liquids; it allows in-line monitoring of hydrogenation reactions and can be used to determine the reaction kinetics of these reactions. In this work, as proof of concept we demonstrate the optimization of the Pd-catalyzed hydrogenation reactions of styrene, phenylacetylene, cyclohexene, and hex-5-en-2-one in a microfluidic context.

6.
Chem Commun (Camb) ; 55(50): 7235-7238, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31165813

ABSTRACT

An NMR approach based on parahydrogen hyperpolarization is presented to detect and resolve specific classes of metabolites in complex biomixtures at down to nanomolar concentrations. We demonstrate our method on solid phase extracts of urine, by simultaneously observing hundreds of metabolites well below the limits of detection of thermal NMR.

7.
Dalton Trans ; 47(40): 14277-14287, 2018 Oct 16.
Article in English | MEDLINE | ID: mdl-29881835

ABSTRACT

The supramolecular assembly of metal-porphyrin hexamers with bidentate ligands in chloroform solutions is demonstrated by UV/Vis and 1H NMR-titrations, and Small Angle Neutron Scattering (SANS) experiments. Titrations of zinc porphyrin hexamer Zn1 with 1,4-diazabicyclo[2,2,2]octane (DABCO) revealed that at a DABCO/Zn1 molar ratio of 3, intermolecular sandwich complexes are formed, which can be considered as "circular-shaped porphyrin ladders". These supramolecular complexes further aggregate into larger polymeric stacks, as a result of a combination of cooperativity effects, π-π stacking interactions, and chelate effects. The presence of rodlike assemblies in solution, formed by assembly of Zn1 and DABCO, is confirmed by SANS-experiments. Using a model for cylindrical assemblies, curve fitting calculations reveal that rods with an average length of 26 nm and a radius of 30-35 Å were formed, corresponding to columnar stacks of approximately 30 hexamer molecules. In contrast, the metal-free hexamer H21 did not form extended assemblies due to the absence of coordinative intermolecular interactions.

8.
J Biol Inorg Chem ; 23(7): 1119-1128, 2018 10.
Article in English | MEDLINE | ID: mdl-29523971

ABSTRACT

This study explores key features of bromine and iodine metabolism in the filamentous brown alga and genomics model Ectocarpus siliculosus. Both elements are accumulated in Ectocarpus, albeit at much lower concentration factors (2-3 orders of magnitude for iodine, and < 1 order of magnitude for bromine) than e.g. in the kelp Laminaria digitata. Iodide competitively reduces the accumulation of bromide. Both iodide and bromide are accumulated in the cell wall (apoplast) of Ectocarpus, with minor amounts of bromine also detectable in the cytosol. Ectocarpus emits a range of volatile halogenated compounds, the most prominent of which by far is methyl iodide. Interestingly, biosynthesis of this compound cannot be accounted for by vanadium haloperoxidase since the latter have not been found to catalyze direct halogenation of an unactivated methyl group or hydrocarbon so a methyl halide transferase-type production mechanism is proposed.


Subject(s)
Bromine/metabolism , Hydrocarbons, Halogenated/metabolism , Iodine/metabolism , Phaeophyceae/metabolism , Volatile Organic Compounds/metabolism , Bromine/chemistry , Halogenation , Hydrocarbons, Halogenated/chemistry , Iodine/chemistry , Phaeophyceae/chemistry , Phaeophyceae/cytology , Volatile Organic Compounds/chemistry
9.
Magn Reson Chem ; 56(7): 633-640, 2018 07.
Article in English | MEDLINE | ID: mdl-29220098

ABSTRACT

Nuclear magnetic resonance (NMR) studies of complex mixtures are often limited by the low sensitivity of the technique and by spectral overlap. We have recently reported on an NMR chemosensor on the basis of para-Hydrogen Induced Polarization that potentially addresses both these issues, albeit for specific classes of compounds. This approach makes use of Signal Amplification By Reversible Exchange (SABRE) catalysts in methanol and allows selective detection and quantification of dilute analytes in complex mixtures. Herein, we demonstrate that, despite a large decrease in attained hyperpolarization, this method can be extended to water-alcohol mixtures. Our approach was tested on whisky, where nitrogenous heterocyclic flavor components at low-micromolar concentration could be detected and quantified.

10.
Bioconjug Chem ; 28(8): 2160-2166, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28697600

ABSTRACT

A novel synthetic methodology, employing a combination of the strain-promoted azide-alkyne cycloaddition and maleimide-thiol reactions, for the preparation of permethylated ß-cyclodextrin-linker-peptidyl conjugates is reported. Two different bifunctional maleimide cross-linking probes, the polyethylene glycol containing hydrophilic linker bicyclo[6.1.0] nonyne-maleimide and the hydrophobic 5'-dibenzoazacyclooctyne-maleimide, were attached to azide-appended permethylated ß-cyclodextrin. The successfully introduced maleimide function was exploited to covalently graft a cysteine-containing peptide (Ac-Tyr-Arg-Cys-Amide) to produce the target conjugates. The final target compounds were isolated in high purity after purification by isocratic preparative reverse-phase high-performance liquid chromatography. This novel synthetic approach is expected to give access to many different cyclodextrin-linker peptides.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Oligopeptides/chemistry , beta-Cyclodextrins/chemistry , Alkynes/chemistry , Amino Acid Sequence , Azides/chemistry , Maleimides/chemistry , Methylation , Sulfhydryl Compounds/chemistry
11.
European J Org Chem ; 2017(24): 3387-3414, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28736501

ABSTRACT

Radioiodinated pharmaceuticals are convenient tracers for clinical and research investigations because of the relatively long half-lives of radioactive iodine isotopes (i.e., 123I, 124I, and 131I) and the ease of their chemical insertion. Their application in radionuclide imaging and therapy may, however, be hampered by poor in vivo stability of the C-I bond. After an overview of the use of iodine in biology and nuclear medicine, we present here a survey of the catabolic pathways for iodinated xenobiotics, including their biodistribution, accumulation, and biostability. We summarize successful rational improvements in the biostability and conclude with general guidelines for the design of stable radioiodinated pharmaceuticals. It appears to be necessary to consider the whole molecule, rather than the radioiodinated fragment alone. Iodine radionuclides are generally retained in vivo on sp2 carbon atoms in iodoarenes and iodovinyl moieties, but not in iodinated heterocycles or on sp3 carbon atoms. Iodoarene substituents also have an influence, with increased in vivo deiodination in the cases of iodophenols and iodoanilines, whereas methoxylation and difluorination improve biostability.

12.
Angew Chem Int Ed Engl ; 56(31): 9174-9177, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28590559

ABSTRACT

DOSY is an NMR spectroscopy technique that resolves resonances according to the analytes' diffusion coefficients. It has found use in correlating NMR signals and estimating the number of components in mixtures. Applications of DOSY in dilute mixtures are, however, held back by excessively long measurement times. We demonstrate herein, how the enhanced NMR sensitivity provided by SABRE hyperpolarization allows DOSY analysis of low-micromolar mixtures, thus reducing the concentration requirements by at least 100-fold.

13.
J Am Chem Soc ; 139(23): 7761-7767, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28443329

ABSTRACT

Signal amplification by reversible exchange (SABRE) is an inexpensive, fast, and even continuous hyperpolarization technique that uses para-hydrogen as hyperpolarization source. However, current SABRE faces a number of stumbling blocks for translation to biochemical and clinical settings. Difficulties include inefficient polarization in water, relatively short-lived 1H-polarization, and relatively limited substrate scope. Here we use a water-soluble polarization transfer catalyst to hyperpolarize nitrogen-15 in a variety of molecules with SABRE-SHEATH (SABRE in shield enables alignment transfer to heteronuclei). This strategy works in pure H2O or D2O solutions, on substrates that could not be hyperpolarized in traditional 1H-SABRE experiments, and we record 15N T1 relaxation times of up to 2 min.


Subject(s)
Hydrogen/chemistry , Nitrogen Isotopes/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Water/chemistry
15.
J Magn Reson ; 276: 122-127, 2017 03.
Article in English | MEDLINE | ID: mdl-28183024

ABSTRACT

SABRE (Signal Amplification By Reversible Exchange) is a nuclear spin hyperpolarization technique based on the reversible concurrent binding of small molecules and para-hydrogen (p-H2) to an iridium metal complex in solution. At low magnetic field, spontaneous conversion of p-H2 spin order to enhanced longitudinal magnetization of the nuclear spins of the other ligands occurs. Subsequent complex dissociation results in hyperpolarized substrate molecules in solution. The lifetime of this complex plays a crucial role in attained SABRE NMR signal enhancements. Depending on the ligands, vastly different dissociation rates have been previously measured using EXSY or selective inversion experiments. However, both these approaches are generally time-consuming due to the long recycle delays (up to 2min) necessary to reach thermal equilibrium for the nuclear spins of interest. In the cases of dilute solutions, signal averaging aggravates the problem, further extending the experimental time. Here, a new approach is proposed based on coherent hyperpolarization transfer to substrate protons in asymmetric complexes at high magnetic field. We have previously shown that such asymmetric complexes are important for application of SABRE to dilute substrates. Our results demonstrate that a series of high sensitivity EXSY spectra can be collected in a short experimental time thanks to the NMR signal enhancement and much shorter recycle delay.

16.
Chemistry ; 22(27): 9277-82, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27258850

ABSTRACT

NMR signal amplification by reversible exchange (SABRE) has been observed for pyridine, methyl nicotinate, N-methylnicotinamide, and nicotinamide in D2 O with the new catalyst [Ir(Cl)(IDEG)(COD)] (IDEG=1,3-bis(3,4,5-tris(diethyleneglycol)benzyl)imidazole-2-ylidene). During the activation and hyperpolarization steps, exclusively D2 O was used, resulting in the first fully biocompatible SABRE system. Hyperpolarized (1) H substrate signals were observed at 42.5 MHz upon pressurizing the solution with parahydrogen at close to the Earth's magnetic field, at concentrations yielding barely detectable thermal signals. Moreover, 42-, 26-, 22-, and 9-fold enhancements were observed for nicotinamide, pyridine, methyl nicotinate, and N-methylnicotinamide, respectively, in conventional 300 MHz studies. This research opens up new opportunities in a field in which SABRE has hitherto primarily been conducted in CD3 OD. This system uses simple hardware, leaves the substrate unaltered, and shows that SABRE is potentially suitable for clinical purposes.


Subject(s)
Coordination Complexes/chemistry , Deuterium Oxide/chemistry , Iridium/chemistry , Niacinamide/analogs & derivatives , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Catalysis , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Conformation , Niacinamide/chemistry , Water/chemistry
17.
Phys Chem Chem Phys ; 18(16): 10931-40, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27040354

ABSTRACT

When exposed to a potential exceeding 1.5 V versus RHE for several minutes the molecular iridium bishydroxide complex bearing a pentamethylcyclopentadienyl and a N-dimethylimidazolin-2-ylidene ligand spontaneously adsorbs onto the surface of glassy carbon and gold electrodes. Simultaneously with the adsorption of the material on the electrode, the evolution of dioxygen is detected and modifications of the catalyst structure are observed. XPS and XAS studies reveal that the species present at the electrode interface is best described as a partly oxidized molecular species rather than the formation of large aggregates of iridium oxide. These findings are in line with the unique kinetic profile of the parent complex in the water oxidation reaction.

18.
Dalton Trans ; 45(15): 6650-9, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-26974191

ABSTRACT

Iron(III) meso-tartrate, a metal-organic complex, is a new anticaking agent for sodium chloride. A molecular structure in solution is proposed, based on a combination of experimental and molecular modelling results. We show that the active complex is a binuclear iron(iii) complex with two bridging meso-tartrate ligands. The iron atoms are antiferromagnetically coupled, resulting in a reduced paramagnetic nature of the solution. In solution, a water molecule coordinates to each iron atom as a sixth ligand, resulting in an octahedral symmetry around each iron atom. When the water molecule is removed, a flat and charged site is exposed, matching the charge distribution of the {100} sodium chloride crystal surface. This charge distribution is also found in the iron(iii) citrate complex, another anticaking agent. This gives a possible adsorption geometry on the crystal surface, which in turn explains the anticaking activity of the iron(III) meso-tartrate complex.

19.
Anal Chem ; 88(6): 3406-12, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26901632

ABSTRACT

When dealing with trace analysis of complex mixtures, NMR suffers from both low sensitivity and signal overlap. NMR chemosensing, in which the association between an analyte and a receptor is "signaled" by an NMR response, has been proposed as a valuable analytical tool for biofluids and natural extracts. Such chemosensors offer the possibility to simultaneously detect and distinguish different analytes in solution, which makes them particularly suitable for analytical applications on complex mixtures. In this study, we have combined NMR chemosensing with nuclear spin hyperpolarization. This was realized using an iridium complex as a receptor in the presence of parahydrogen: association of the target analytes to the metal center results in approximately 1000-fold enhancement of the NMR response. This amplification allows the detection, identification, and quantification of analytes at low-micromolar concentrations, provided they can weakly associate to the iridium chemosensor. Here, our NMR chemosensing approach was applied to the quantitative determination of several flavor components in methanol extracts of ground coffee.


Subject(s)
Biological Products/chemistry , Magnetic Resonance Spectroscopy/methods
20.
J Magn Reson ; 265: 59-66, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26859865

ABSTRACT

SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz (4)J coupling to p-H2 derived hydrides for their ortho protons, and a much lower (5)J coupling for their meta protons. Interestingly, the (4)J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz.

SELECTION OF CITATIONS
SEARCH DETAIL
...