Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Clin Oral Investig ; 25(12): 6857-6870, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33977386

ABSTRACT

OBJECTIVE: This five-phase, single-blind, crossover in situ trial evaluated the effects of desensitizing or anti-erosive toothpastes on dentin erosive wear and tubule occlusion. MATERIALS AND METHODS: Some characteristics such as relative dentin abrasivity (RDA), viscosity (V), cytotoxicity, and fluoride and calcium (Ca) availability of the toothpastes were also tested. Samples were positioned on removable intraoral appliances from 15 volunteers (n=4), according to the groups, C-control (0 ppm fluoride), F-sodium monofluorophosphate (MFP), A-MFP and arginine+calcium carbonate, CSP-calcium sodium phosphosilicate, and CS-MFP and calcium silicate+sodium phosphate. Erosion-abrasion cycling was performed (1% citric acid, 2min, 6×/day; toothbrushing, 5s, 2×/day). Surface loss (SL) was evaluated by optical profilometry. Environmental scanning electron microscopy images (ESEM) counted the number of open dentin tubules (ODTs). Data were statistically analyzed (α=0.05). RESULTS: There were no significant differences in SL among groups (p=0.468). The ODT for CSP, CS, and A groups were significantly lower than the control. CSP and CS presented significantly less ODT than F, but they did not significantly differ from A. F and CS were more abrasive than all the other toothpastes; CSP was more abrasive than A, and C was the least abrasive. CSP presented higher V (p<0.05). All toothpastes presented lower cell viability than the control without toothpaste exposure. F and A presented significantly higher values of F- (p<0.05). All fluoride toothpastes had similar amount of Ca, differing from the control (p<0.05). CONCLUSION: Although the toothpastes caused similar degree of erosive wear, CSP and CS were able to occlude the dentin tubules. CLINICAL RELEVANCE: Desensitizing toothpastes containing calcium, sodium, phosphate, and silicate could be a suitable option for treating dentin hypersensitivity.


Subject(s)
Tooth Erosion , Tooth Wear , Fluorides , Humans , Silicates , Single-Blind Method , Sodium Fluoride , Tooth Erosion/prevention & control , Toothbrushing , Toothpastes
2.
Oper Dent ; 42(2): 215-224, 2017.
Article in English | MEDLINE | ID: mdl-27892840

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the influence of the cementation strategy on the fatigue resistance of zirconia crowns. The null hypothesis was that the cementation strategy would not affect the fatigue resistance of the crowns. METHODS AND MATERIALS: Seventy-five simplified molar tooth crown preparations were machined in glass fiber-filled epoxy resin. Zirconia crowns were designed (thickness=0.7 mm), milled by computer-aided design/computer-aided manufacturing, and sintered, as recommended. Crowns were cemented onto the resin preparations using five cementation strategies (n=15): ZP, luting with zinc phosphate cement; PN, luting with Panavia F resin cement; AL, air particle abrasion with alumina particles (125 µm) as the crown inner surface pretreatment + Panavia F; CJ, tribochemical silica coating as crown inner surface pretreatment + Panavia F; and GL, application of a thin layer of porcelain glaze followed by etching with hydrofluoric acid and silanization as crown inner surface pretreatment + Panavia F. Resin cement was activated for 30 seconds for each surface. Specimens were tested until fracture in a stepwise stress fatigue test (10,000 cycles in each step, 600 to 1400 N, frequency of 1.4 Hz). The mode of failure was analyzed by stereomicroscopy and scanning electron microscopy. Data were analyzed by Kaplan-Meier and Mantel-Cox (log rank) tests and a pairwise comparison (p<0.05) and by Weibull analysis. RESULTS: The CJ group had the highest load mean value for failure (1200 N), followed by the PN (1026 N), AL (1026 N), and GL (1013 N) groups, while the ZP group had the lowest mean value (706 N). Adhesively cemented groups (CJ, AL, PN, and GL) needed a higher number of cycles for failure than the group ZP did. The groups' Weibull moduli (CJ=5.9; AL=4.4; GL=3.9; PN=3.7; ZP=2.1) were different, considering the number of cycles for failure data. The predominant mode of failure was a fracture that initiated in the cement/zirconia layer. Finite element analysis showed the different stress distribution for the two models. CONCLUSION: Adhesive cementation of zirconia crowns improves fatigue resistance.


Subject(s)
Cementation/methods , Crowns , Dental Prosthesis Design , Dental Restoration Failure , Air Abrasion, Dental , Computer-Aided Design , Dental Porcelain , Dental Stress Analysis , Materials Testing , Microscopy, Electron, Scanning , Resin Cements , Surface Properties , Zinc Phosphate Cement , Zirconium
3.
Oper Dent ; 40(2): 163-71, 2015.
Article in English | MEDLINE | ID: mdl-25136900

ABSTRACT

The aims of this study were to investigate 1) the influence of cleansing methods after saliva contamination and 2) aging conditions (thermocycling and water storage) on zirconia shear bond strength (SBS) with a resin cement. One hundred and eighty zirconia specimens were sandblasted with 50 µm aluminum oxide particles, immersed in saliva for one minute (with the exception of the control group, [C]), and divided into groups according to the cleansing method, as follows: water rinse (W); 37% phosphoric acid gel (PA); cleaning paste (ie, Ivoclean®) containing mainly zirconium oxide (IC); and 70% isopropanol (AL). Scanning electron microscopy was done to qualitatively evaluate the zirconia surface after each cleansing method. For the SBS test, resin cement buttons were bonded to the specimens using a dedicated jig. SBS was evaluated according to standard protocols after 24 hours, 5000 thermal cycles (TC), or 150 days of water storage. Statistical analysis was performed using two-way analysis of variance and Tukey test (p<0.05). Data showed a significant effect for the 150 days of water storage, TC, and 24 hours of water storage (150 days < TC < 24 hours). Group comparisons showed that PA < AL and W < IC and C. SBS ranged from 10.4 to 21.9 MPa (24 hours), from 6.4 to 14.8 MPa (TC), and from 2.9 to 7.0 MPa (150 days). Failure analysis revealed a greater percentage of mixed failures for the majority of the specimens and a smaller percentage of adhesive failures at the ceramic-resin cement interface. Our findings suggest that Ivoclean® was able to maintain adequate SBS values after TC and 150 days of storage, comparable to the uncontaminated zirconia.


Subject(s)
Resin Cements/metabolism , Saliva/metabolism , Yttrium/metabolism , Zirconium/metabolism , Dental Bonding , Dental Stress Analysis , Humans , Microscopy, Electron, Scanning , Photoelectron Spectroscopy
4.
Oper Dent ; 40(3): 304-12, 2015.
Article in English | MEDLINE | ID: mdl-25535780

ABSTRACT

This study investigated the effect of nonrinse conditioners (ie, Ketac Nano Primer [KNP] and GC Self Conditioner [SC]) used as substrate pretreatment and their respective paste-paste resin-modified glass-ionomer cement (RMGIC) (ie, Ketac Nano [KN] and Fuji Filling LC [FF]) on microtensile bond strength to dentin and marginal sealing when compared with traditional RMGIC (ie, Photac Fil [PF] and Fuji II LC [FII]) used in association with polyacrylic acid (ie, Ketac Cavity Conditioner [KC] and GC Cavity Conditioner [CC]). A total of 192 extracted human molars were allocated into eight groups: KNP-KN, KC-KN, KNP-PF, KC-PF, SC-FF, CC-FF, SC-FII, and CC-FII. For microtensile bond strength, the teeth were sectioned to expose occlusal dentin and restored according to the group. After 24 hours the teeth were cut to yield nine beams per tooth (±0.8 mm(2)). Testing was done using a universal testing machine followed by failure mode classification. For microleakage testing, standardized cavity preparations were made on the buccal cementoenamel junction and restored according to the group. The teeth were thermocycled (500 cycles, 8°C to 48°C), sealed, immersed in methylene blue for 24 hours, and then assessed for microleakage using a stereomicroscope. Microtensile bond strengths in megapascals (mean±SE) were KNP-KN: 14.9 ± 1.6, KC-KN: 17.2 ± 1.5, KNP-PF: 31.2 ± 1.6, KC-PF: 26.2 ± 1.2, SC-FF: 23.6 ± 1.5, SC-FII: 31.2 ± 1.5, and CC-FII: 21.9 ± 1.5. Cervical margins showed more microleakage compared with occlusal margins. Overall, the use of nonrinse conditioners in association with traditional RMGICs demonstrated superior microtensile bond strengths to dentin when compared with the paste-paste RMGICs. Meanwhile, the association between polyacrylic acid (CC) and a traditional RMGIC (FII) led to the least microleakage for cervical locations when compared with all other groups.


Subject(s)
Dental Bonding/methods , Glass Ionomer Cements/therapeutic use , Dental Bonding/standards , Dental Leakage/prevention & control , Dental Restoration, Permanent/methods , Dental Stress Analysis , Glass Ionomer Cements/standards , Humans , In Vitro Techniques , Molar/surgery , Tensile Strength
5.
J Dent Res ; 93(12): 1270-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25201918

ABSTRACT

This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives-but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels-we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via ß-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP inhibitors into the synthesis of therapeutic adhesives that may enhance the longevity of hybrid layers and the overall clinical performance of adhesively bonded resin composite restorations.


Subject(s)
Anti-Bacterial Agents/chemistry , Dentin-Bonding Agents/chemistry , Doxycycline/chemistry , Nanotubes/chemistry , Aluminum Silicates/chemical synthesis , Aluminum Silicates/chemistry , Aluminum Silicates/toxicity , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/toxicity , Caseins/drug effects , Cell Culture Techniques , Clay , Dental Bonding , Dental Pulp/cytology , Dental Pulp/drug effects , Dentin/drug effects , Dentin/ultrastructure , Dentin-Bonding Agents/chemical synthesis , Dentin-Bonding Agents/toxicity , Doxycycline/chemical synthesis , Doxycycline/toxicity , Humans , Materials Testing , Matrix Metalloproteinase 1/drug effects , Matrix Metalloproteinase Inhibitors/chemistry , Nanotubes/toxicity , Polymerization , Resin Cements/chemical synthesis , Resin Cements/chemistry , Resin Cements/toxicity , Stem Cells/drug effects , Streptococcus mutans/drug effects , Stress, Mechanical , Tensile Strength , Time Factors
6.
Rev Odontol UNESP ; 19(1): 217-26, 1990.
Article in Portuguese | MEDLINE | ID: mdl-2099551

ABSTRACT

It was evaluated the Vickers hardness of five high-copper casting alloys, in their original package form and after casting, according to the casting method used. That way, ten ingots, supplied by the manufacturers of each alloy, were included in self-curing acrylic resin, polished, numerated and submitted to Vickers hardness test at load of 200 g during 30 seconds. Afterwards the numerated ingots were removed from the acrylic resin and five of those were cast in an electrical casting machine and the other five in a centrifugal casting machine with an air/gas torch. The specimens obtained were included in self-curing acrylic resin, polished and submitted to Vickers hardness test. As a result it was verified that there is a variation of hardness among the alloys tested, and the use of the electrical casting machine produced lower hardness values than those produced when used the centrifugal casting machine with an air/gas torch. Also, there is a decrease of hardness of the cast alloys when they are tested in their original form and after casting.


Subject(s)
Dental Alloys , Dental Casting Technique , Copper , Hardness , Hardness Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...