Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 231(1): 255-272, 2021 07.
Article in English | MEDLINE | ID: mdl-33590894

ABSTRACT

Geranylgeranyl diphosphate (GGPP) produced by GGPP synthase (GGPPS) serves as a precursor for many plastidial isoprenoids, including carotenoids. Phytoene synthase (PSY) converts GGPP into phytoene, the first committed intermediate of the carotenoid pathway. Here we used biochemical, molecular, and genetic tools to characterise the plastidial members of the GGPPS family in tomato (Solanum lycopersicum) and their interaction with PSY isoforms. The three tomato GGPPS isoforms found to localise in plastids (SlG1, 2 and 3) exhibit similar kinetic parameters. Gene expression analyses showed a preferential association of individual GGPPS and PSY isoforms when carotenoid biosynthesis was induced during root mycorrhization, seedling de-etiolation and fruit ripening. SlG2, but not SlG3, physically interacts with PSY proteins. By contrast, CRISPR-Cas9 mutants defective in SlG3 showed a stronger impact on carotenoid levels and derived metabolic, physiological and developmental phenotypes compared with those impaired in SlG2. Double mutants defective in both genes could not be rescued. Our work demonstrates that the bulk of GGPP production in tomato chloroplasts and chromoplasts relies on two cooperating GGPPS paralogues, unlike other plant species such as Arabidopsis thaliana, rice or pepper, which produce their essential plastidial isoprenoids using a single GGPPS isoform.


Subject(s)
Arabidopsis , Solanum lycopersicum , Carotenoids , Farnesyltranstransferase , Solanum lycopersicum/genetics , Protein Isoforms/genetics
2.
J Pineal Res ; 68(1): e12613, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31583753

ABSTRACT

Pulmonary arterial hypertension of the neonate (PAHN) is a pathophysiological condition characterized by maladaptive pulmonary vascular remodeling and abnormal contractile reactivity. This is a multifactorial syndrome with chronic hypoxia and oxidative stress as main etiological drivers, and with limited effectiveness in therapeutic approaches. Melatonin is a neurohormone with antioxidant and vasodilator properties at the pulmonary level. Therefore, this study aims to test whether a postnatal treatment with melatonin during the neonatal period improves in a long-lasting manner the clinical condition of PAHN. Ten newborn lambs gestated and born at 3600 m were used in this study, five received vehicle and five received melatonin in daily doses of 1 mg kg-1 for the first 3 weeks of life. After 1 week of treatment completion, lung tissue and small pulmonary arteries (SPA) were collected for wire myography, molecular biology, and morphostructural analyses. Melatonin decreased pulmonary arterial pressure the first 4 days of treatment. At 1 month old, melatonin decreased the contractile response to the vasoconstrictors K+ , TX2 , and ET-1. Further, melatonin increased the endothelium-dependent and muscle-dependent vasodilation of SPA. Finally, the treatment decreased pulmonary oxidative stress by inducing antioxidant enzymes and diminishing pro-oxidant sources. In conclusion, melatonin improved vascular reactivity and oxidative stress at the pulmonary level in PAHN lambs gestated and born in chronic hypoxia.


Subject(s)
Arterial Pressure/drug effects , Hypertension, Pulmonary/physiopathology , Hypoxia/metabolism , Melatonin , Oxidative Stress/drug effects , Animals , Animals, Newborn , Antioxidants/administration & dosage , Antioxidants/pharmacokinetics , Antioxidants/pharmacology , Lung/blood supply , Lung/drug effects , Melatonin/administration & dosage , Melatonin/pharmacokinetics , Melatonin/pharmacology , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Sheep , Vasodilator Agents/administration & dosage , Vasodilator Agents/pharmacokinetics , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...