Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 186: 1-12, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34242644

ABSTRACT

This work provides a new perception toward the application of the graphenic-biopolymeric composites as a solid-bed for separation and purification of bioactive compounds. Graphene oxide nanocomposites with functionalized sheets by soluble and insoluble nanocomplexes of chitosan and Arabic gum, were successfully synthesized and employed for the adsorption and purification of crocin, a nutraceutical from saffron. The composites exhibited a nanostructured scaffold with a particle size of 10 nm and experienced an unprecedented increase in the surface area by about 300% and improved d-spacing sheets by 17%. The optimum conditions for crocin separation were temperature = 318 K, stirring rate = 300 rpm, initial concentration = 100 mg L-1 and pH = 6. Under these conditions, the nanocomposites separated 99.1% of crocin in an equilibrium time of 30 min. The adsorption data were best represented by Freundlich isotherm and pseudo-second-order kinetic models. The thermodynamic studies indicated that the crocin adsorption on nanocomposites was an endothermic, spontaneous and physisorption process. The high-performance liquid chromatography (HPLC) analysis revealed that produced nanocomposites adsorbed crocin efficiently from saffron extract with a purity similar to the standard sample. The possible interaction mechanisms between crocin and nanocomposites were electrostatic interactions and hydrogen bonding.


Subject(s)
Carotenoids/isolation & purification , Chitosan/chemistry , Crocus/chemistry , Graphite/chemistry , Gum Arabic/chemistry , Nanocomposites , Adsorption , Chemical Fractionation , Chromatography, High Pressure Liquid , Hydrogen Bonding , Kinetics , Nanotechnology , Static Electricity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...