Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38436443

ABSTRACT

The abundance of extraterrestrial methanol makes the reaction between methanol molecules in a molecular cluster a possible key step in the search for mechanisms for the formation of more complex molecules under the conditions of the interstellar medium as well as circumstellar and planetary atmospheres. The reaction leading to the formation of the dimethyl ether ion from a methanol molecule interacting with a protonated methanol ion via the elimination of a water molecule is a basic mechanism for the formation of complex organic molecules. Here, we experimentally examine such reactions in the gas phase, analyzing the production and reactivity of protonated cluster ions formed by the ionization of a supersonic jet of methanol. Focusing especially on the post-collisional relaxation of the protonated methanol dimer and trimer ions after high-energy single collisions, the results indicate a strong size selectivity favoring the occurrence of this reaction only in the dimer ion. To elucidate this behavior, the velocity distribution of the eliminated water molecule was measured using an event-by-event coincidence analysis. These results are interpreted using quantum chemical calculations of the dissociation pathways. It turns out that in the dimer case, two transition states are able to contribute to this intracluster reaction. In the trimer case, methanol evaporation appears as the most energetically favorable relaxation pathway.

2.
ACS Omega ; 7(12): 10235-10242, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35382340

ABSTRACT

Postirradiation dissociation of molecular clusters has been mainly studied assuming energy redistribution in the entire cluster prior to the dissociation. Here, the evaporation of water molecules from out-of-equilibrium pyridinium-water cluster ions was investigated using the recently developed correlated ion and neutral time-of-flight (COINTOF) mass spectrometry technique in combination with a velocity-map imaging (VMI) device. This special setup enables the measurement of velocity distributions of the evaporated molecules upon high-velocity collisions with an argon atom. The distributions measured for pyridinium-water cluster ions are found to have two distinct components. Besides a low-velocity contribution, which corresponds to the statistical evaporation of water molecules after nearly complete redistribution of the excitation energy within the clusters, a high-velocity contribution is also found in which the molecules are evaporated before the energy redistribution is complete. These two different evaporation modes were previously observed and described for protonated water cluster ions. However, unlike in the case of pure water clusters, the low-velocity part of the distributions for pyridinium-doped water clusters is itself composed of two distinct Maxwell-Boltzmann distributions, indicating that evaporated molecules originate in this case from out-of-equilibrium processes. Statistical molecular dynamics simulations were performed to (i) understand the effects caused in the ensuing evaporation process by the various excitation modes at different initial cluster constituents and to (ii) simulate the distributions resulting from sequential evaporations. The presence of a hydrophobic impurity in water clusters is shown to impact water molecule evaporation due to the energy storage in the internal degrees of freedom of the impurity.

3.
J Chem Phys ; 151(16): 164306, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31675859

ABSTRACT

Nitroimidazoles are important compounds in medicine, biology, and the food industry. The growing need for their structural assignment, as well as the need for the development of the detection and screening methods, provides the motivation to understand their fundamental properties and reactivity. Here, we investigated the decomposition of protonated ronidazole [Roni+H]+ in low-energy and high-energy collision-induced dissociation (CID) experiments. Quantum chemical calculations showed that the main fragmentation channels involve intramolecular proton transfer from nitroimidazole to its side chain followed by a release of NH2CO2H, which can proceed via two pathways involving transfer of H+ from (1) the N3 position via a barrier of TS2 of 0.97 eV, followed by the rupture of the C-O bond with a thermodynamic threshold of 2.40 eV; and (2) the -CH3 group via a higher barrier of 2.77 eV, but with a slightly lower thermodynamic threshold of 2.24 eV. Electrospray ionization of ronidazole using deuterated solvents showed that in low-energy CID, only pathway (1) proceeds, and in high-energy CID, both channels proceed with contributions of 81% and 19%. While both of the pathways are associated with small kinetic energy release of 10-23 meV, further release of the NO• radical has a KER value of 339 meV.

4.
J Am Soc Mass Spectrom ; 30(12): 2678-2691, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31667709

ABSTRACT

Imidazole (IMI) is a basic building block of many biologically important compounds. Thus, its electron ionization properties are of major interest and essential for the comparison with other molecular targets containing its elemental structure. 2-Nitroimidazole (2NI) contains the imidazole ring together with nitrogen dioxide bound to the C2 position, making it a radiosensitizing compound in hypoxic tumors. In the present study, we investigated electron ionization of IMI and 2NI and determined the mass spectra, the ionization energies, and appearance energies of the most abundant fragment cations. The experiments were complemented by quantum chemical calculations on the thermodynamic thresholds and potential energy surfaces, with particular attention to the calculated transition states for the most important dissociation reactions. In the case of IMI, substantially lower threshold values (up to ~ 1.5 eV) were obtained in the present work compared to the only available previous electron ionization study. Closer agreement was found with recent photon ionization values, albeit the general trend of slightly higher values for the case of electron ionization. The only exception for imidazole was found in the molecular cation at m/z 40 which is tentatively assigned to the quasi-linear HCCNH+/ HCNCH+. Electron ionization of 2NI leads to analogous fragment cations as in imidazole, yet different dissociation pathways must be operative due to the presence of the NO2 group. Regarding the potential radiosensitization properties of 2NI, electron ionization is characterized by dominant parent cation formation and release of the neutral NO radical.


Subject(s)
Imidazoles/chemistry , Electrons , Ions/chemistry , Mass Spectrometry/methods , Models, Molecular , Nitroimidazoles/chemistry , Thermodynamics
5.
Proc Natl Acad Sci U S A ; 116(45): 22540-22544, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31636185

ABSTRACT

Atmospheric aerosols are one of the major factors affecting planetary climate, and the addition of anthropogenic molecules into the atmosphere is known to strongly affect cloud formation. The broad variety of compounds present in such dilute media and their specific underlying thermalization processes at the nanoscale make a complete quantitative description of atmospheric aerosol formation certainly challenging. In particular, it requires fundamental knowledge about the role of impurities in water cluster growth, a crucial step in the early stage of aerosol and cloud formation. Here, we show how a hydrophobic pyridinium ion within a water cluster drastically changes the thermalization properties, which will in turn change the corresponding propensity for water cluster growth. The combination of velocity map imaging with a recently developed mass spectrometry technique allows the direct measurement of the velocity distribution of the water molecules evaporated from excited clusters. In contrast to previous results on pure water clusters, the low-velocity part of the distributions for pyridinium-doped water clusters is composed of 2 distinct Maxwell-Boltzmann distributions, indicating out-of-equilibrium evaporation. More generally, the evaporation of water molecules from excited clusters is found to be much slower when the cluster is doped with a pyridinium ion. Therefore, the presence of a contaminant molecule in the nascent cluster changes the energy storage and disposal in the early stages of gas-to-particle conversion, thereby leading to an increased rate of formation of water clusters and consequently facilitating homogeneous nucleation at the early stages of atmospheric aerosol formation.

6.
J Mass Spectrom ; 54(10): 802-816, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31410948

ABSTRACT

Histidine is an aromatic amino acid crucial for the biological functioning of proteins and enzymes. When biological matter is exposed to ionising radiation, highly energetic particles interact with the surrounding tissue which leads to efficient formation of low-energy electrons. In the present study, the interaction of low-energy electrons with gas-phase histidine is studied at a molecular level in order to extend the knowledge of electron-induced reactions with amino acids. We report both on the formation of positive ions formed by electron ionisation and negative ions induced by electron attachment. The experimental data were complemented by quantum chemical calculations. Specifically, the free energies for possible fragmentation reactions were derived for the τ and the π tautomer of histidine to get insight into the structures of the formed ions and the corresponding neutrals. We report the experimental ionisation energy of (8.48 ± 0.03) eV for histidine which is in good agreement with the calculated vertical ionisation energy. In the case of negative ions, the dehydrogenated parent anion is the anion with the highest mass observed upon dissociative electron attachment. The comparison of experimental and computational results was also performed in view of a possible thermal decomposition of histidine during the experiments, since the sample was sublimated in the experiment by resistive heating of an oven. Overall, the present study demonstrates the effects of electrons as secondary particles in the chemical degradation of histidine. The reactions induced by those electrons differ when comparing positive and negative ion formation. While for negative ions, simple bond cleav ages prevail, the observed fragment cations exhibit partly restructuring of the molecule during the dissociation process.


Subject(s)
Histidine/chemistry , Electrons , Heating , Ions/chemistry , Mass Spectrometry , Models, Chemical , Molecular Conformation , Quantum Theory , Thermodynamics
7.
Int J Mol Sci ; 20(14)2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31315268

ABSTRACT

Misonidazole (MISO) was considered as radiosensitizer for the treatment of hypoxic tumors. A prerequisite for entering a hypoxic cell is reduction of the drug, which may occur in the early physical-chemical stage of radiation damage. Here we study electron attachment to MISO and find that it very effectively captures low energy electrons to form the non-decomposed molecular anion. This associative attachment (AA) process is exclusively operative within a very narrow resonance right at threshold (zero electron energy). In addition, a variety of negatively charged fragments are observed in the electron energy range 0-10 eV arising from dissociative electron attachment (DEA) processes. The observed DEA reactions include single bond cleavages (formation of NO2-), multiple bond cleavages (excision of CN-) as well as complex reactions associated with rearrangement in the transitory anion and formation of new molecules (loss of a neutral H2O unit). While any of these AA and DEA processes represent a reduction of the MISO molecule, the radicals formed in the course of the DEA reactions may play an important role in the action of MISO as radiosensitizer inside the hypoxic cell. The present results may thus reveal details of the molecular description of the action of MISO in hypoxic cells.


Subject(s)
Electrons , Misonidazole/chemistry , Radiation-Sensitizing Agents/chemistry , Misonidazole/radiation effects , Radiation-Sensitizing Agents/radiation effects
8.
Nat Commun ; 10(1): 2388, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31160602

ABSTRACT

While matter is irradiated with highly-energetic particles, it may become chemically modified. Thereby, the reactions of free low-energy electrons (LEEs) formed as secondary particles play an important role. It is unknown to what degree and by which mechanism LEEs contribute to the action of electron-affinic radiosensitisers applied in radiotherapy of hypoxic tumours. Here we show that LEEs effectively cause the reduction of the radiosensitiser nimorazole via associative electron attachment with the cross-section exceeding most of known molecules. This supports the hypothesis that nimorazole is selectively cytotoxic to tumour cells due to reduction of the molecule as prerequisite for accumulation in the cell. In contrast, dissociative electron attachment, commonly believed to be the source of chemical activity of LEEs, represents only a minor reaction channel which is further suppressed upon hydration. Our results show that LEEs may strongly contribute to the radiosensitising effect of nimorazole via associative electron attachment.


Subject(s)
Chemoradiotherapy , Electrons , Neoplasms/therapy , Nimorazole/chemistry , Radiation-Sensitizing Agents/chemistry , Humans , Nimorazole/therapeutic use , Oxidation-Reduction , Radiation-Sensitizing Agents/therapeutic use
9.
Rapid Commun Mass Spectrom ; 32(2): 113-120, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29108138

ABSTRACT

RATIONALE: Histidine (His) is an essential amino acid, whose side group consists of an aromatic imidazole moiety that can bind a proton or metal cation and act as a donor in intermolecular interactions in many biological processes. While the dissociation of His monomer ions is well known, information on the kinetic energy released in the dissociation is missing. METHODS: Using a new home-built electrospray ionization (ESI) source adapted to a double-focusing mass spectrometer of BE geometry, we investigated the fragmentation reactions of protonated and deprotonated His, [His + H]+ and [His - H]- , and the protonated His dimer [His2  + H]+ , accelerated to 6 keV in a high-energy collision with helium gas. We evaluated the kinetic energy release (KER) for the observed dissociation channels. RESULTS: ESI of His solution in positive mode led to the formation of His clusters [Hisn + H]+ , n = 1-6, with notably enhanced stability of the tetramer. [His + H]+ dissociates predominantly by loss of (H2 O + CO) with a KER of 278 meV, while the dominant dissociation channel of [His - H]- involves loss of NH3 with a high KER of 769 meV. Dissociation of [His2 + H]+ is dominated by loss of the monomer but smaller losses are also observed. CONCLUSIONS: The KER for HCOOH loss from both [His + H]+ and [His - H]- is similar at 278 and 249 meV, respectively, which suggests that the collision-induced dissociation takes place via a similar mechanism. The loss of COOH and C2 H5 NO2 from the dimer suggests that the dimer of His binds through a shared proton between the imidazole moieties.

10.
Chemistry ; 23(52): 12892-12899, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-28695572

ABSTRACT

Low-energy electrons effectively decompose the isomers 2-nitroimidazole and 4(5)-nitroimidazole by dissociative electron attachment (DEA) into a variety of fragment anions and radicals. The present study shows that a distinct selectivity for the two isomers occurs in the DEA reactions. Several new decay channels are observed for 2-nitroimidazole, including a dominant one leading to the loss of molecular H2 O by attachment of a low-energy electron. In contrast, the loss of a single hydrogen atom is a much more efficient reaction in DEA to 4(5)-nitroimidazole. Quantum chemical calculations were carried out to explain the pronounced isomer effect found in the DEA experiment. Although the free energies of the reactions are similar for the different isomers, the very different natures of the dipole-bound states and valence-bound anions lead to preference for or hindrance of a particular dissociation channel. Nitroimidazolic compounds are considered as radiosensitizing compounds in tumor radiation therapy. The enhanced formation of fragments, including the highly reactive hydroxyl radical, in DEA to 2-nitroimidazole suggests that it may be a more efficient radiosensitizing agent than 4(5)-nitroimidazoles.

11.
J Phys Chem Lett ; 8(13): 3159-3165, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28628332

ABSTRACT

The deleterious cellular effects of ionizing radiation are well-known, but the mechanisms causing DNA damage are poorly understood. The accepted molecular events involve initial oxidation and deprotonation at guanine sites, triggering hydrogen atom abstraction reactions from the sugar moieties, causing DNA strand breaks. Probing the chemistry of the initially formed radical cation has been challenging. Here, we generate, spectroscopically characterize, and examine the reactivity of the Watson-Crick nucleobase pair radical cation in the gas phase. We observe rich chemistry, including proton transfer between the bases and propagation of the radical site in deoxyguanosine from the base to the sugar, thus rupturing the sugar. This first example of a gas-phase model system providing molecular-level details on the chemistry of an ionized DNA base pair paves the way toward a more complete understanding of molecular processes induced by radiation. It also highlights the role of radical propagation in chemistry, biology, and nanotechnology.


Subject(s)
DNA Damage , Models, Molecular , Base Pairing , Guanine/chemistry
12.
Angew Chem Int Ed Engl ; 54(49): 14685-9, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26473406

ABSTRACT

The velocity of a molecule evaporated from a mass-selected protonated water nanodroplet is measured by velocity map imaging in combination with a recently developed mass spectrometry technique. The measured velocity distributions allow probing statistical energy redistribution in ultimately small water nanodroplets after ultrafast electronic excitation. As the droplet size increases, the velocity distribution rapidly approaches the behavior expected for macroscopic droplets. However, a distinct high-velocity contribution provides evidence of molecular evaporation before complete energy redistribution, corresponding to non-ergodic events.

13.
J Phys Chem A ; 119(39): 9986-95, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26344652

ABSTRACT

Soft X-ray photoelectron spectroscopy has been used to investigate the radiosensitizer nimorazole and related model compounds. We report the valence and C, N, and O 1s photoemission spectra and K-edge NEXAFS spectra of gas-phase nimorazole, 1-methyl-5-nitroimidazole, and 4(5)-nitroimidazole in combination with theoretical calculations. The valence band and core level spectra are in agreement with theory. We determine the equilibrium populations of the two tautomers in 4(5)-nitroimidazole and find a ratio of 1:0.7 at 390 K. The NEXAFS spectra of the studied nitroimidazoles show excellent agreement with spectra of compounds available in the literature that exhibit a similar chemical environment. By comparing 1-methyl-5-nitroimidazole (single tautomer) with 4(5)-nitroimidazole, we are able to disentangle the photoemission and photoabsorption spectra and identify features due to each single tautomer.


Subject(s)
Models, Theoretical , Nimorazole/chemistry , Photoelectron Spectroscopy/methods , Radiation-Sensitizing Agents/chemistry , Models, Molecular , Molecular Structure
14.
Chemphyschem ; 16(15): 3151-5, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26289662

ABSTRACT

Proton transfer (PT) from protonated pyridine to water molecules is observed after excitation of microhydrated protonated pyridine (Py) clusters PyH(+) (H2 O)n (n=0-5) is induced by a single collision with an Ar atom at high incident velocity (95×10(3)  m s(-1) ). Besides the fragmentation channel associated with the evaporation of water molecules, the charged-fragment mass spectrum shows competition between the production of the PyH(+) ion (or its corresponding charged fragments) and the production of H(+) (H2 O) or H(+) (H2 O)2 ions. The increase in the production of protonated water fragments as a function of the number of H2 O molecules in the parent cluster ion as well sd the observation of a stable H(+) (H2 O)2 fragment, even in the case of the dissociation of PyH(+) (H2 O)2 , are evidence of the crucial role of PT in the relaxation process, even for a small number of solvating water molecules.


Subject(s)
Pyridines/chemistry , Water/chemistry , Protons , Solubility
15.
Rapid Commun Mass Spectrom ; 29(15): 1395-402, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26147479

ABSTRACT

RATIONALE: Non-covalent amino acid clusters are the subject of intense research in diverse areas including peptide bond formation studies or the determination of proton affinities or methylating abilities of amino acids. However, most of the research has focused on positive ions and little is known about anionic clusters. METHODS: Fragmentation reactions of deprotonated tryptophan (Trp), [Trp-H](-) and Trp singly deprotonated non-covalently bound clusters [Trp(n) -H](-), n = 2, 3, 4, were investigated using low-energy collision-induced dissociation (CID) with He atoms, high-energy CID with Na atoms, and electron-induced dissociation (EID) with 20-35 eV electrons. Fragmentation of the monomeric Trp anion, where all labile hydrogens were exchanged for deuterium [d(4) -Trp-D](-), was investigated using low-energy CID and EID, in order to shed light on the dissociation mechanisms. RESULTS: The main fragmentation channel for Trp cluster anions, [Trp(n) -H](-), n >1, is the loss of the neutral monomer. The fragmentation of the deprotonated Trp monomer induced by electrons resembles the fragmentation induced by high-energy collisions through electronic excitation of the parent. However, the excitation must precede in a different way, shown through only monomer loss from larger clusters, n >1, in case of EID, but intracluster chemistry in the case of high-energy CID. CONCLUSIONS: The anion of the indole ring C(8)H(6) N(-) has been identified in the product ion spectra of [Trp(n) -H](-) using all activation methods, thus providing a diagnostic marker ion. No evidence was found for formation of peptide bonds as a route to prebiotic peptides in the fragmentation reactions of these singly deprotonated Trp cluster ions.


Subject(s)
Protons , Spectrometry, Mass, Electrospray Ionization/methods , Tryptophan/chemistry , Anions/chemistry , Peptides/chemistry
16.
Phys Chem Chem Phys ; 17(39): 25837-44, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-25942055

ABSTRACT

Guanine radical cations are formed upon oxidation of DNA. Deoxyguanosine (dG) is used as a model, and the gas-phase infrared (IR) spectroscopic signature and gas-phase unimolecular and bimolecular chemistry of its radical cation, dG˙(+), A, which is formed via direct electrospray ionisation (ESI/MS) of a methanolic solution of Cu(NO3)2 and dG, are examined. Quantum chemistry calculations have been carried out on 28 isomers and comparisons between their calculated IR spectra and the experimentally-measured spectra suggest that A exists as the ground-state keto tautomer. Collision-induced dissociation (CID) of A proceeds via cleavage of the glycosidic bond, while its ion­molecule reactions with amine bases occur via a number of pathways including hydrogen-atom abstraction, proton transfer and adduct formation. A hidden channel, involving isomerisation of the radical cation via adduct formation, is revealed through the use of two stages of CID, with the final stage of CID showing the loss of CH2O as a major fragmentation pathway from the reformed radical cation, dG˙(+). Quantum chemistry calculations on the unimolecular and bimolecular reactivity are also consistent with A being present as a ground-state keto tautomer.


Subject(s)
Deoxyguanosine/chemistry , Free Radicals/chemistry , Cations/chemistry , Gases/chemistry , Isomerism , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Infrared
17.
J Phys Chem A ; 119(25): 6668-75, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26020684

ABSTRACT

Low-energy electrons (0-8 eV) effectively decompose 4-nitroimidazole (4NI) and the two methylated isomers 1-methyl-5-nitroimidazole and 1-methyl-4-nitroimidazole via dissociative electron attachment (DEA). The involved unimolecular decompositions range from simple bond cleavages (loss of H(•), formation of NO2(-)) to complex reactions possibly leading to a complete degradation of the target molecule (formation of CN(-), etc.). At energies below 2 eV, the entire rich chemistry induced by DEA is completely quenched by methylation, as demonstrated in a previous communication (Tanzer, K.; Feketeová, L.; Puschnigg, B.; Scheier, P.; Illenberger. E.; Denifl, S. Angew. Chem., Int. Ed. 2014, 53, 12240). The observation that in 4NI neutral radicals and radical anions are formed via DEA at high efficiency already at threshold (0 eV) may have significant implications for the development of nitroimidazole-based radiosensitizers in tumor radiation therapy.


Subject(s)
Electrons , Nitroimidazoles/chemistry , Anions/chemistry , Hydrogen/chemistry , Hydroxyl Radical/chemistry , Molecular Structure , Radiation-Sensitizing Agents/chemistry , Spectrum Analysis
18.
Phys Chem Chem Phys ; 17(19): 12598-607, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25899156

ABSTRACT

Nitroimidazoles are important compounds with chemotherapeutic applications as antibacterial drugs or as radiosensitizers in radiotherapy. Despite their use in biological applications, little is known about the fundamental properties of these compounds. Understanding the ionization reactions of these compounds is crucial in evaluating the radiosensitization potential and in developing new and more effective drugs. Thus, the present study investigates the decomposition of negative and positive ions of 2-nitroimidazole and 4(5)-nitroimidazole using low- and high-energy Collision-Induced Dissociation (CID) and Electron-Induced Dissociation (EID) by two different mass spectrometry techniques and is supported by quantum chemistry calculations. EID of [M+H](+) leads to more extensive fragmentation than CID and involves many radical cleavages including loss of H˙ leading to the formation of the radical cation, M˙(+). The stability (metastable decay) and the fragmentation (high-energy CID) of the radical cation M˙(+) have been probed in a crossed-beam experiment involving primary electron ionization of the neutral nitroimidazole. Thus, fragments in the EID spectra of [M+H](+) that come from further dissociation of radical cation M˙(+) have been highlighted. The loss of NO˙ radical from M˙(+) is associated with a high Kinetic Energy Release (KER) of 0.98 eV. EID of [M-H](-) also leads to additional fragments compared to CID, however, with much lower cross section. Only EID of [M+H](+) leads to a slight difference in the decomposition of 2-nitroimidazole and 4(5)-nitroimidazole.


Subject(s)
Electrons , Models, Molecular , Nitroimidazoles/chemistry , Molecular Conformation , Nitric Oxide/chemistry , Vibration
19.
Angew Chem Int Ed Engl ; 53(45): 12240-3, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25224248

ABSTRACT

Low-energy electrons (LEEs) at energies of less than 2 eV effectively decompose 4-nitroimidazole (4NI) by dissociative electron attachment (DEA). The reactions include simple bond cleavages but also complex reactions involving multiple bond cleavages and formation of new molecules. Both simple and complex reactions are associated with pronounced sharp features in the anionic yields, which are interpreted as vibrational Feshbach resonances acting as effective doorways for DEA. The remarkably rich chemistry of 4NI is completely blocked in 1-methyl-4-nitroimidazole (Me4NI), that is, upon methylation of 4NI at the N1 site. These remarkable results have also implications for the development of nitroimidazole based radiosensitizers in tumor radiation therapy.


Subject(s)
Nitroimidazoles/chemistry , Methylation
20.
Chem Commun (Camb) ; 49(66): 7343-5, 2013 Aug 25.
Article in English | MEDLINE | ID: mdl-23852224

ABSTRACT

Oxidative damage to DNA yields guanine radical cations. Their gas-phase IR spectroscopic signature and acidity have been modelled by the radical cation of 9-methylguanine. Comparisons with quantum chemistry calculations suggest that radical cation formation produces the ground-state keto tautomer, which has an N-H acidity enhanced by ~470 kJ mol(-1).


Subject(s)
Guanine/analogs & derivatives , Models, Molecular , Quantum Theory , Acids , Cations , Free Radicals , Gases/chemistry , Guanine/chemistry , Infrared Rays , Phase Transition
SELECTION OF CITATIONS
SEARCH DETAIL
...