Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(14): 8739-8751, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33876033

ABSTRACT

Here, we report a theoretical investigation, based on density functional theory calculations, into the role of the occupation d-states on the adsorption properties of CH4, CO, H2 and CH3OH on 3d 13-atom transition-metal (TM13) clusters (TM = Fe, Co, Ni, Cu). Except for Cu13, a gradual increase in the occupation of the d-states, i.e., from Fe13 to Ni13, increases the magnitude of the adsorption energy almost linearly for the H2/TM13 and CO/TM13 systems, which can be explained by the enhancement of the sp-d hybridization due to the shift of the d-states towards the highest occupied molecular orbital (HOMO). For Cu13, the d-states are located well below the HOMO, which reduces the sp-d hybridization, and hence, a smaller adsorption energy is obtained. However, this picture does not hold for CH4/TM13 and CH3OH/TM13, where the adsorption energy has nearly the same value for all TM13 clusters, which can be explained by electrostatic effects such as local polarization of the molecules and nearby TM atoms, and hence, the basic features of physisorption systems. Based on the electron density difference, the polarization effects are slightly larger for systems with empty d-states.

2.
Phys Chem Chem Phys ; 21(48): 26637-26646, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31774074

ABSTRACT

Mixed CeO2-ZrO2 nanoclusters have the potential to play a crucial role in nanocatalysis, however, the atomistic understanding of those nanoclusters is far from satisfactory. In this work, we report a density functional theory investigation combined with Spearman rank correlation analysis of the energetic, structural and electronic properties of mixed CenZr15-nO30 nanoclusters as a function of the composition (n = 0, 1,…,14, 15). For instance, we found a negative excess energy for all putative global minimum CenZr15-nO30 configurations with a minimum at about n = 6 (i.e., nearly 40% Ce), in which both the oxygen anion surroundings and cation radii play a crucial role in the stability and distribution of the chemical species. We found a strong energetic preference of Zr4+ cations to occupy larger coordination number sites, i.e., the nanocluster core region, while the Ce4+ cations are located near vacuum exposed O-rich regions. As expected, we obtained an almost linear decrease of the average bond lengths by replacing Ce4+ by Zr4+ cations in the (ZrO2)15 nanoclusters towards the formation of mixed CenZr15-nO30 nanoclusters, which resulted in a shift towards higher vibrational frequencies. Besides, we also observed that the relative stability of the mixed oxides is directly correlated with the increase (decrease) of the Zr d-state (Ce f-state) contribution to the highest occupied molecular orbital with the increase of the Zr content, hence driving the gap energy towards higher values.

SELECTION OF CITATIONS
SEARCH DETAIL
...