Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(14): e202317038, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38372407

ABSTRACT

Ammonia synthesis holds significant importance for both agricultural fertilizer production and emerging green energy applications. Here, we present a comprehensive characterization of a catalyst for mechanochemical ammonia synthesis, based on Cs-promoted Fe. The study sheds light on the catalyst's dynamic evolution under reaction conditions and the origin of deactivation. Initially, elemental Cs converts to CsH, followed by partial CsOH formation due to trace oxygen impurities on the surface of the Fe metal and the equipment. Concurrently, the mechanical milling process comminutes Fe, exposing fresh metallic Fe surfaces. This comminution correlates with an induction period observed during ammonia formation. Critical to the study, degradation of active Cs promoter species (CsH and CsNH2) into inactive CsOH emerged as the primary deactivation mechanism. By increasing the Cs content from 2.2 mol % to 4.2 mol %, we achieved stable, continuous ammonia synthesis for nearly 90 hours, showcasing one of the longest-running mechanocatalytic gas phase reactions. Studies of the temperature dependence of the reaction revealed negligible bulk temperature influence in the range of -10 °C to 100 °C, highlighting the dominance of mechanical action over bulk thermal effects. This study offers insights into the complex interplay between mechanical processing, reactive species, and deactivation mechanisms in mechanocatalytic ammonia synthesis.

2.
J Am Chem Soc ; 146(8): 5283-5294, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38354317

ABSTRACT

The research on the functional properties of medium- and high-entropy alloys (MEAs and HEAs) has been in the spotlight recently. Many significant discoveries have been made lately in hydrogen-based economy-related research where these alloys may be utilized in all of its key sectors: water electrolysis, hydrogen storage, and fuel cell applications. Despite the rapid development of MEAs and HEAs with the ability to reversibly absorb hydrogen, the research is limited to transition-metal-based alloys that crystallize in body-centered cubic solid solution or Laves phase structures. To date, no study has been devoted to the hydrogenation of rare-earth-element (REE)-based MEAs or HEAs, as well as to the alloys crystallizing in face-centered-cubic (FCC) or hexagonal-close-packed structures. Here, we elucidate the formation and hydrogen storage properties of REE-based ScYNdGd MEA. More specifically, we present the astounding stabilization of the single-phase FCC structure induced by the hydrogen absorption process. Moreover, the measured unprecedented high storage capacity of 2.5 H/M has been observed after hydrogenation conducted under mild conditions that proceeded without any phase transformation in the material. The studied MEA can be facilely activated, even after a long passivation time. The results of complementary measurements showed that the hydrogen desorption process proceeds in two steps. In the first, hydrogen is released from octahedral interstitial sites at relatively low temperatures. In the second, high-temperature process, it is associated with the desorption of hydrogen atoms stored in tetrahedral sites. The presented results may impact future research of a novel group of REE-based MEAs and HEAs with adaptable hydrogen storage properties and a broad scope of possible applications.

3.
ChemSusChem ; 17(6): e202301220, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-37975728

ABSTRACT

The development of mechanochemistry is considerably growing. Benign by design, this technology complies with several principles of green chemistry, contributing to the achievement of the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal objectives. Herein, we report the use of mechanochemical processes in batch to prepare kilogram-scale of the Active Pharmaceutical Ingredient (API): Ibuprofen-Nicotinamide (rac-IBP:NCT) co-crystal in an industrial eccentric vibration mill. This scenario shows a sustainable approach to the industrial up-scaling of pharmaceutical co-crystals by a solvent-free mechanochemical process in batch. The quantitative assessment of the greenness of the mechanochemical process against the Twelve Principles of Green Chemistry was performed using the DOZN 2.0 Green Chemistry Evaluator.


Subject(s)
Chemistry, Pharmaceutical , Ibuprofen , Solvents/chemistry , Ibuprofen/chemistry , Pharmaceutical Preparations
4.
Nat Commun ; 14(1): 5257, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37644018

ABSTRACT

The conversion of carbon-based solids, like non-recyclable plastics, biomass, and coal, into small molecules appears attractive from different points of view. However, the strong carbon-carbon bonds in these substances pose a severe obstacle, and thus-if such reactions are possible at all-high temperatures are required1-5. The Bergius process for coal conversion to hydrocarbons requires temperatures above 450 °C6, pyrolysis of different polymers to pyrolysis oil is also typically carried out at similar temperatures7,8. We have now discovered that efficient hydrogenation of different solid substrates with the carbon-based backbone to light hydrocarbons can be achieved at room temperature by ball milling. This mechanocatalytic method is surprisingly effective for a broad range of different carbon substrates, including even diamond. The reaction is found to proceed via a radical mechanism, as demonstrated by reactions in the presence of radical scavengers. This finding also adds to the currently limited knowledge in understanding mechanisms of reactions induced by ball milling. The results, guided by the insight into the mechanism, could induce more extended exploration to broaden the application scope and help to address the problem of plastic waste by a mechanocatalytic approach.

5.
Angew Chem Int Ed Engl ; 60(50): 26385-26389, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34651400

ABSTRACT

Ammonia synthesis via the high-temperature and high-pressure Haber-Bosch process is one of the most important chemical processes in the world. In spite of numerous attempts over the last 100 years, continuous Haber-Bosch type ammonia synthesis at room-temperature had not been possible, yet. We report the development of a mechanocatalytic system operating continuously at room-temperature and at pressures down to 1 bar. With optimized experimental conditions, a cesium-promoted iron catalyst was shown to produce ammonia at concentrations of more than 0.2 vol. % for over 50 hours.

6.
Chemistry ; 27(23): 6819-6847, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33427335

ABSTRACT

The mechanochemical synthesis of nanomaterials for catalytic applications is a growing research field due to its simplicity, scalability, and eco-friendliness. Besides, it provides materials with distinct features, such as nanocrystallinity, high defect concentration, and close interaction of the components in a system, which are, in most cases, unattainable by conventional routes. Consequently, this research field has recently become highly popular, particularly for the preparation of catalytic materials for various applications, ranging from chemical production over energy conversion catalysis to environmental protection. In this Review, recent studies on mechanochemistry for the synthesis of catalytic materials are discussed. Emphasis is placed on the straightforwardness of the mechanochemical route-in contrast to more conventional synthesis-in fabricating the materials, which otherwise often require harsh conditions. Distinct material properties achieved by mechanochemistry are related to their improved catalytic performance.

7.
Dalton Trans ; 49(48): 17689-17698, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33232434

ABSTRACT

The reversible hydrogenation of aminoalanes employing activated aluminium and piperidine has been explored. A selection of transition metal (TM) compounds have been investigated as additives for producing TM-activated aluminium (TM = Ti, Zr, Hf and Y). The effect of these additives on the activation of aluminium with respect to hydrogenation of an aluminium/piperidinoalane system has been studied. It has been shown that Ti, Zr and Hf can efficiently promote the activation of aluminium for its hydrogenation. The experiments performed showed that the TM activity for the piperidinoalane formation decreases in the order Zr > Hf > Ti > Y. Using multinuclear NMR spectroscopy, the reversibility of this piperidinoalane-based hydrogenation system has been evidenced, demonstrating a potential pathway for hydrogen storage in aminoalanes. The syntheses of piperidinoalanes as well as their structural and spectroscopic characterisation are described. Single-crystal X-ray diffraction analyses of [pip2AlH]2 and [pip3Al]2 (pip = 1-piperidinyl, C5H10N) revealed dimers containing a central [AlN]2 unit.

8.
Dalton Trans ; 49(33): 11689-11696, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32789402

ABSTRACT

The mechanochemical synthesis of tertiary and secondary alanes AlR3 (R = Np 1 or Mes 2; HAlR2 R = Np 3 or Mes 4) is described. These species are reacted with several α-diimines to give a series of aluminium-derived radicals of the form [(diimine)AlR2]˙ (6-11). EPR and several crystallographic studies are reported. These species are thought to form via hydro- or carboalumination and subsequent elimination reactions. This view is supported by the structural data for minor products C12H7(NHDipp)(NDipp)AliBu25 and C13H8(C(iBu)[double bond, length as m-dash]N(m-Xy)(NH(m-Xy)))AliBu212. In addition, the characterization of (C6F5)2B(OC(C6F5)OC12H8) indicates that such a carboboration pathway also provides access to related boron-derived radicals.

9.
RSC Adv ; 10(32): 19027-19033, 2020 May 14.
Article in English | MEDLINE | ID: mdl-35518327

ABSTRACT

Ammonia borane (AB, NH3BH3) is considered as one of the most promising hydrogen storage materials for proton exchange membrane fuel cells due to its high theoretical hydrogen capacity under moderate temperatures. Unfortunately, its on-board application is hampered by the sluggish kinetics, volatile byproducts and harsh conditions for reversibility. In this work, AB and AlH3 were simultaneously infiltrated into a carbon nanotube array (CMK-5) to combine the synergistic effect of alane with nanoconfinement for improving the dehydrogenation properties of AB. Results showed that the transformation from AB to DADB started at room temperature, which promoted AB to release 9.4 wt% H2 within 10 min at a low temperature of 95 °C. Moreover, the entire suppression of all harmful byproducts was observed.

10.
Phys Chem Chem Phys ; 21(23): 12576-12584, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31149688

ABSTRACT

Potassium aluminium tetrahydride KAlH4 of high phase purity (space group Pnma (62)) was synthesized via a mechanochemical route. The thus obtained material was studied by 27Al and 39K MAS NMR spectroscopy. For both nuclei precise data for the isotropic chemical shift and the quadrupole coupling at T = 295 K were derived (27Al: δiso = (107.6 ± 0.2) ppm, CQ = (1.29 ± 0.02) MHz and η = 0.64 ± 0.02; 39K: δiso = (6.1 ± 0.2) ppm, CQ = (0.562 ± 0.005) MHz and η = 0.74 ± 0.02). The straightforward NMR spectroscopic approach applied here should also work for other complex aluminium hydrides and for many other materials containing half-integer nuclei experiencing small to medium-sized quadrupole couplings.

11.
Angew Chem Int Ed Engl ; 58(33): 11262-11265, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31184405

ABSTRACT

Supported catalysts are among the most important classes of catalysts. They are typically prepared by wet-chemical methods, such as impregnation or co-precipitation. Here we disclose that dry ball milling of macroscopic metal powder in the presence of a support oxide leads in many cases to supported catalysts with particles in the nanometer size range. Various supports, including TiO2 , Al2 O3 , Fe2 O3 , and Co3 O4 , and different metals, such as Au, Pt, Ag, Cu, and Ni, were studied, and for each of the supports and the metals, highly dispersed nanoparticles on supports could be prepared. The supported catalysts were tested in CO oxidation, where they showed activities in the same range as conventionally prepared catalysts. The method thus provides a simple and cost-effective alternative to the conventionally used impregnation methods.

12.
Chemphyschem ; 20(10): 1360-1368, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30657245

ABSTRACT

Two approaches for the synthesis of the triethylenediamine (TEDA) ⋅ AlH3 adduct have been discovered. Both, the mechanochemical procedure and the wet chemical method lead to crystalline products. Starting from metallic Al powder and TEDA, ball milling under a pressure of 100 bar H2 facilitates a direct hydrogenation of aluminum with conversions up to 90 %. Structure determination from X-ray powder diffraction data revealed an 1-D-coordination polymer of the type [TEDA-AlH3 ]n . Furthermore, solid-state NMR techniques have been applied to analyze composition and structure of the products. Due to the polymeric arrangement, an enhanced stability of the material occurred which was investigated by thermal analysis showing a decomposition located above 200 °C. Overall, the stabilization of AlH3 by TEDA holds promise for hydrogen storage applications.

13.
Angew Chem Int Ed Engl ; 56(9): 2445-2448, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28111869

ABSTRACT

In situ ball milling of solid catalysts is a promising yet almost unexplored concept for boosting catalytic performance. The continuous preferential oxidation of CO (CO-PROX) under in situ ball milling of Cu-based catalysts such as Cu/Cr2 O3 is presented. At temperatures as low as -40 °C, considerable activity and more than 95 % selectivity were achieved. A negative apparent activation energy was observed, which is attributed to the mechanically induced generation and subsequent thermal healing of short-lived surface defects. In situ ball milling at sub-zero temperatures resulted in an increase of the CO oxidation rate by roughly 4 orders of magnitude. This drastic and highly selective enhancement of CO oxidation showcases the potential of in situ ball milling in heterogeneous catalysis.

14.
Article in English | MEDLINE | ID: mdl-27048725

ABSTRACT

The crystal structure of diethylaminoalane, [H2Al-N(C2H5)2]2, was determined by X-ray powder diffraction in conjunction with DFT calculations. Diethylaminoalane crystallizes in the monoclinic space group P21/c with a = 7.4020 (2), b = 12.9663 (3), c = 7.2878 (2) Šand ß = 90.660 (2)° at 293 K. The crystal structure was confirmed by DFT calculations and Raman spectroscopy. The molecular structure of diethylaminoalane consists of dimers of [H2Al-N(CH2CH3)2] in which an Al2N2 four-membered ring is formed by a center of inversion. Such an arrangement of the aminoalane moieties in the crystal structure is well known for this class of compound, as shown by the comparison with ethylmethylaminoalane and diisopropylaminoalane.

15.
Materials (Basel) ; 8(9): 5891-5921, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-28793541

ABSTRACT

This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

17.
Inorg Chem ; 51(7): 4143-50, 2012 Apr 02.
Article in English | MEDLINE | ID: mdl-22404046

ABSTRACT

Complex Eu(AlH(4))(2) and Sr(AlH(4))(2) hydrides have been prepared by a mechanochemical metathesis reaction from NaAlH(4) and europium or strontium chlorides. The crystal structures were solved from powder X-ray diffraction data in combination with solid-state (27)Al NMR spectroscopy. The thermolysis pathway was analyzed in detail, allowing identification of new intermediate EuAlH(5)/SrAlH(5) compounds. Rehydrogenation experiments indicate that the second decomposition step is reversible.

18.
Phys Chem Chem Phys ; 13(38): 17234-41, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21879065

ABSTRACT

After more than a decade of intense research on NaAlH(4) doped with transition metals as hydrogen storage material, the actual mechanism of the decomposition and rehydrogenation reaction is still unclear. Early on, monomeric AlH(3) was named as a possible transport shuttle for aluminium, but never observed experimentally. Here we report for the first time the trapping of volatile AlH(3) produced during the decomposition of undoped NaAlH(4) by an adduct of sodium alanate and crown ether. The resulting Al(2)H(7)(-) anion was identified by solid-state (27)Al NMR spectroscopy. Based on this indirect evidence of volatile alane, we present a simple description of the processes occurring during the reversible dehydrogenation of NaAlH(4).

19.
J Am Chem Soc ; 131(46): 16735-43, 2009 Nov 25.
Article in English | MEDLINE | ID: mdl-19886669

ABSTRACT

A novel type of complex rare-earth aluminum hydride was prepared by mechanochemical preparation. The crystal structure of the REAlH(6) (with RE = La, Ce, Pr, Nd) compounds was calculated by DFT methods and confirmed by preliminary structure refinements. The trigonal crystal structure consists of isolated [AlH(6)](3-) octahedra bridged via [12] coordinated RE cations. The investigation of the rare-earth aluminum hydrides during thermolysis shows a decrease of thermal stability with increasing atomic number of the RE element. Rare-earth hydrides (REH(x)) are formed as primary dehydrogenation products; the final products are RE-aluminum alloys. The calculated decomposition enthalpies of the rare-earth aluminum hydrides are at the lower end for reversible hydrogenation under moderate conditions. Even though these materials may require somewhat higher pressures and/or lower temperatures for rehydrogenation, they are interesting examples of low-temperature metal hydrides for which reversibility might be reached.

20.
Angew Chem Int Ed Engl ; 48(36): 6608-30, 2009.
Article in English | MEDLINE | ID: mdl-19598190

ABSTRACT

Hydrogen is a promising energy carrier in future energy systems. However, storage of hydrogen is a substantial challenge, especially for applications in vehicles with fuel cells that use proton-exchange membranes (PEMs). Different methods for hydrogen storage are discussed, including high-pressure and cryogenic-liquid storage, adsorptive storage on high-surface-area adsorbents, chemical storage in metal hydrides and complex hydrides, and storage in boranes. For the latter chemical solutions, reversible options and hydrolytic release of hydrogen with off-board regeneration are both possible. Reforming of liquid hydrogen-containing compounds is also a possible means of hydrogen generation. The advantages and disadvantages of the different systems are compared.

SELECTION OF CITATIONS
SEARCH DETAIL
...