Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Neuroscience ; 551: 94-102, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38762084

ABSTRACT

Research suggests that locomotion may be primarily caused by shifting stable body balance from one location in the environment to another with subsequent rhythmical muscle activation by the central pattern generator (CPG), constituting a multi-level control system. All levels interact with environmental forces affected by proprioceptive and vestibular reflexes as well as vision. A similar multi-level control schema is likely used to shift body balance laterally when the body weight is rhythmically transferred from side-to-side. In order to do so, the system shifts a specific body posture in space. This body posture is referred to as the threshold or referent body posture, R, at which all muscles involved can be at rest but are activated depending on the deflection of the actual body posture, Q, from R. This concept has previously been investigated for forward and backward locomotion. The purpose of the present study was to verify if it was also applicable to locomotor tasks in other directions such as sidestepping. We predicted that during sidestepping, the actual and referent posture can transiently match each other bringing the activity of multiple muscles to a minimum. The existence of such minima was demonstrated in healthy adults performing three locomotor tasks involving shifts of the body weight from side-to-side thus further supporting the validity of the multi-level control scheme of locomotion.


Subject(s)
Body Weight , Muscle, Skeletal , Postural Balance , Standing Position , Humans , Male , Adult , Female , Muscle, Skeletal/physiology , Postural Balance/physiology , Body Weight/physiology , Young Adult , Electromyography , Posture/physiology , Locomotion/physiology , Biomechanical Phenomena/physiology
2.
Neurorehabil Neural Repair ; 38(3): 176-186, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38347695

ABSTRACT

BACKGROUND: Coordination between arm movements and postural adjustments is crucial for reaching-while-stepping tasks involving both anticipatory postural adjustments (APAs) and compensatory movements to effectively propel the whole-body forward so that the hand can reach the target. Stroke impairs the ability to coordinate the action of multiple body segments but the underlying mechanisms are unclear. Objective. To determine the effects of stroke on reaching performance and APAs during whole-body reaching. METHODS: We tested arm reaching in standing (stand-reach) and reaching-while-stepping (step-reach; 15 trials/condition) in individuals with chronic stroke (n = 18) and age-matched healthy subjects (n = 13). Whole-body kinematics and kinetic data were collected during the tasks. The primary outcome measure for step-reach was "gain" (g), defined as the extent to which the hip displacement contributing to hand motion was neutralized by appropriate changes in upper limb movements (g = 1 indicates complete compensation) and APAs measured as spatio-temporal profiles of the center-of-pressure shifts preceding stepping. RESULTS: Individuals with stroke had lower gains and altered APAs compared to healthy controls. In addition, step onset was delayed, and the timing of endpoint, trunk, and foot movement offset was prolonged during step-reach compared to healthy controls. Those with milder sensorimotor impairment and better balance function had higher gains. Altered APAs were also related to reduced balance function. CONCLUSIONS: Altered APAs and prolonged movement offset in stroke may lead to a greater reliance on compensatory arm movements. Altered APAs in individuals with stroke may be associated with a reduced shift of referent body configuration during the movement.


Subject(s)
Posture , Stroke , Humans , Psychomotor Performance , Movement , Hand , Stroke/complications , Postural Balance , Electromyography , Muscle, Skeletal
3.
Motor Control ; 27(4): 782-799, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37225175

ABSTRACT

The referent control theory (RCT) for action and perception is an advanced formulation of the equilibrium-point hypothesis. The RCT suggests that rather than directly specifying the desired motor outcome, the nervous system controls action and perception indirectly by setting the values of parameters of physical and physiological laws. This is done independently of values of kinematic and kinetic variables including electromyographic patterns describing the motor outcome. One such parameter-the threshold muscle length, λ, at which motoneurons of a given muscle begin to be recruited, has been identified experimentally. In RCT, a similar parameter, the referent arm position, R, has been defined for multiple arm muscles as the threshold arm position at which arm muscles can be quiescent but activated depending on the deflection of the actual arm position, Q, from R. Changes in R result in reciprocal changes in the activity of opposing muscle groups. We advanced the explanatory power of RCT by combining the usual biomechanical descriptions of motor actions with the identification of the timing of R underlying arm movements made with reversals in three directions and to three different extents. We found that in all movements, periods of minimization of the activity of multiple muscles could be identified at ∼61%-86% of the reaching extent in each direction. These electromyographic minimization periods reflect the spatial coordinates at which the R and Q overlap during the production of movements with reversals. The findings support the concept of the production of arm movement by shifting R.


Subject(s)
Arm , Goals , Humans , Arm/physiology , Movement/physiology , Upper Extremity , Muscle, Skeletal/physiology
5.
Exp Brain Res ; 241(5): 1353-1365, 2023 May.
Article in English | MEDLINE | ID: mdl-37010540

ABSTRACT

Human locomotion may result from monotonic shifts in the referent position, R, of the body in the environment. R is also the spatial threshold at which muscles can be quiescent but are activated depending on the deflection of the current body configuration Q from R. Shifts in R are presumably accomplished with the participation of proprioceptive and visual feedback and responsible for transferring stable body balance (equilibrium) from one place in the environment to another, resulting in rhythmic activity of multiple muscles by a central pattern generator (CPG). We tested predictions of this two-level control scheme. In particular, in response to a transient block of vision during locomotion, the system can temporarily slow shifts in R. As a result, the phase of rhythmical movements of all four limbs will be changed for some time, even though the rhythm and other characteristics of locomotion will be fully restored after perturbation, a phenomenon called long-lasting phase resetting. Another prediction of the control scheme is that the activity of multiple muscles of each leg can be minimized reciprocally at specific phases of the gait cycle both in the presence and absence of vision. Speed of locomotion is related to the rate of shifts in the referent body position in the environment. Results confirmed that human locomotion is likely guided by feedforward shifts in the referent body location, with subsequent changes in the activity of multiple muscles by the CPG. Neural structures responsible for shifts in the referent body configuration causing locomotion are suggested.


Subject(s)
Posture , Walking , Humans , Walking/physiology , Posture/physiology , Locomotion/physiology , Gait/physiology , Muscle, Skeletal/physiology
6.
J Neurophysiol ; 128(4): 1025-1039, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36070246

ABSTRACT

Conventional, computational theories limit the understanding of how action and perception are controlled. In an alternative scheme, the nervous system controls the values of physical and neurophysiological parameters that predetermine the choice of the spatial frames of reference (FRs) for action and perception. For example, all possible eye positions, Q, can be considered as comprising a spatial FR in which extraocular muscles (EOMs) stabilize gaze directions. The origin or referent point of this FR is a specific, threshold eye position, R, at which EOMs can be quiescent but activated depending on the difference between Q and R. Starting before eye motion, shifts in R cause displacement of the FR and resetting of the stable equilibrium position to which the eyes are forced to move. Rather than corollary discharge, the depiction of visual images integrated across the entire retina in the shifted spatial FR is responsible for remapping visual receptive fields and visual constancy. These suggestions are illustrated in computer models of saccades in the referent control framework in humans and monkeys. The existence of three types of visual RF remapping during saccades is suggested. Properly scaled, shifts in the R underlying a saccade are transmitted to motoneurons of arm muscles to guide reach-to-grasp motion in the same, eye-centered FR. Some predictions of the proposed control scheme have been verified and new tests are suggested. The scheme is applicable to several eye-hand coordination deficits including micrography in Parkinson's disease and explains why vision helps deafferented subjects diminish movement deficits.


Subject(s)
Saccades , Visual Perception , Humans , Movement , Vision, Ocular , Visual Perception/physiology
7.
Motor Control ; 26(1): 76-91, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34920415

ABSTRACT

We tested the hypothesis that the ipsilateral corticospinal system, like the contralateral corticospinal system, controls the threshold muscle length at which wrist muscles and the stretch reflex begin to act during holding tasks. Transcranial magnetic stimulation was applied over the right primary motor cortex in 21 healthy subjects holding a smooth or coarse block between the hands. Regardless of the lifting force, motor evoked potentials in right wrist flexors were larger for the smooth block. This result was explained based on experimental evidence that motor actions are controlled by shifting spatial stretch reflex thresholds. Thus, the ipsilateral corticospinal system is involved in threshold position control by modulating facilitatory influences of hand skin afferents on motoneurons of wrist muscles during bimanual object manipulation.


Subject(s)
Motor Cortex , Muscle, Skeletal , Electromyography , Evoked Potentials, Motor/physiology , Humans , Motor Cortex/physiology , Muscle, Skeletal/physiology , Pyramidal Tracts/physiology , Transcranial Magnetic Stimulation
8.
Clin Neurophysiol ; 132(11): 2870-2889, 2021 11.
Article in English | MEDLINE | ID: mdl-34628342

ABSTRACT

Unperturbed human locomotion presumably results from feedforward shifts in stable body equilibrium in the environment, thus avoiding falling and subsequent catching considered in alternative theories of locomotion. Such shifts are achieved by relocation of the referent body configuration at which multiple muscle recruitment begins. Rather than being directly specified by a central pattern generator, multiple muscles are activated depending on the extent to which the body is deflected from the referent, threshold body configuration, as confirmed in previous studies. Based on the referent control theory of action and perception, solutions to classical problems in motor control are offered, including the previously unresolved problem of the integration of central and reflex influences on motoneurons and the problem of how posture and movement are related. The speed of locomotion depends on the rate of shifts in the referent body configuration. The transition from walking to running results from increasing the rate of referent shifts. It is emphasised that there is a certain hierarchy between reciprocal and co-activation of agonist and antagonist muscles during locomotion and other motor actions, which is also essential for the understanding of how locomotor speed is regulated. The analysis opens a new avenue in neurophysiological approaches to human locomotion with clinical implications.


Subject(s)
Central Pattern Generators/physiology , Locomotion/physiology , Movement/physiology , Muscle, Skeletal/physiology , Postural Balance/physiology , Proprioception/physiology , Humans
9.
Neurorehabil Neural Repair ; 35(3): 207-219, 2021 03.
Article in English | MEDLINE | ID: mdl-33514272

ABSTRACT

BACKGROUND: Motor performance is a complex process controlled in task-specific spatial frames of reference (FRs). Movements can be made within the framework of the body (egocentric FR) or external space (exocentric FR). People with stroke have impaired reaching, which may be related to deficits in movement production in different FRs. OBJECTIVE: To characterize rapid motor responses to changes in the number of degrees of freedom for movements made in different FRs and their relationship with sensorimotor and cognitive impairment in individuals with mild chronic stroke. METHODS: Healthy and poststroke individuals moved their hand along the contralateral forearm (egocentric task) and between targets in the peripersonal space (exocentric task) without vision while flexing the trunk. Trunk movement was blocked in randomized trials. RESULTS: For the egocentric task, controls produced the same endpoint trajectories in both conditions (free- and blocked-trunk) by preserving similar shoulder-elbow interjoint coordination (IJC). However, endpoint trajectories were dissimilar because of altered IJC in stroke. For the exocentric task, controls produced the same endpoint trajectories when the trunk was free or blocked by rapidly changing the IJC, whereas this was not the case in stroke. Deficits in exocentric movement after stroke were related to cognitive but not sensorimotor impairment. CONCLUSIONS: Individuals with mild stroke have deficits rapidly responding to changing conditions for complex reaching tasks. This may be related to cognitive deficits and limitations in the regulation of tonic stretch reflex thresholds. Such deficits should be considered in rehabilitation programs encouraging the reintegration of the affected arm into activities of daily living.


Subject(s)
Hemorrhagic Stroke/physiopathology , Ischemic Stroke/physiopathology , Motor Activity/physiology , Psychomotor Performance/physiology , Spatial Behavior/physiology , Upper Extremity/physiopathology , Aged , Aged, 80 and over , Biomechanical Phenomena , Female , Follow-Up Studies , Humans , Male , Middle Aged , Personal Space , Severity of Illness Index , Torso/physiopathology
10.
Clin Neurophysiol ; 131(9): 2067-2078, 2020 09.
Article in English | MEDLINE | ID: mdl-32682234

ABSTRACT

OBJECTIVES: The corticospinal system (CS) regulates muscle activation through shifts in muscle-level tonic stretch-reflex thresholds (TSRT). This ability is impaired in stroke and contributes to sensorimotor impairments such as spasticity. We determined the role of CS in elbow flexor activity regulation in healthy and post-stroke subjects. We also determined whether CS modulation deficits were related to sensorimotor impairment intensity in post-stroke individuals. METHODS: Seventeen healthy (59.8 ± 12.2 yr) and 27 stroke subjects (58.7 ± 10.1 yr) had transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1) flexor representation to elicit motor-evoked potentials (MEPs) in elbow flexors in different angular positions. In a subset of post-stroke subjects (n = 12), flexor TSRTs were measured in passive and active conditions, and TSRT modulation was determined. RESULTS: Position-related MEP amplitude modulation was similar in healthy and mild stroke subjects, while subjects with more severe stroke exhibited less consistent modulation. MEP modulation in stroke was related to clinical upper limb motor impairment, spasticity, and the ability to modulate TSRTs between passive and active elbow movements. CONCLUSIONS: CS output was closely related to TSRT modulation. Impairments in TSRT regulation may underlie motor deficits in moderate-to-severe post-stroke individuals. SIGNIFICANCE: Translation of these neurophysiological findings to clinical applications may enhance post-stroke motor recovery.


Subject(s)
Evoked Potentials, Motor/physiology , Motor Cortex/physiopathology , Pyramidal Tracts/physiopathology , Reflex, Stretch/physiology , Stroke/physiopathology , Aged , Electroencephalography , Electromyography , Female , Humans , Male , Middle Aged , Transcranial Magnetic Stimulation
11.
J Neurophysiol ; 124(1): 115-133, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32490708

ABSTRACT

Conventional explanations of the vestibulo-ocular reflex (VOR) and eye and head movements are revisited by considering two alternative frameworks addressing the question of how the brain controls motor actions. Traditionally, biomechanical and/or computational frameworks reflect the views of several prominent scholars of the past, including Helmholtz and von Holst, who assumed that the brain directly specifies the desired motor outcome and uses efference copy to influence perception. However, empirical studies resulting in the theory of referent control of action and perception (an extension of the equilibrium-point hypothesis) revealed that direct specification of motor outcome is inconsistent with nonlinear properties of motoneurons and with the physical principle that the brain can control motor actions only indirectly, by changing or maintaining the values of neurophysiological parameters that influence, but can remain independent of, biomechanical variables. Some parameters are used to shift the origin (referent) points of spatial frames of reference (FRs) or system of coordinates in which motor actions emerge without being predetermined. Parameters are adjusted until the emergent motor actions meet the task demands. Several physiological parameters and spatial FRs have been identified, supporting the notion of indirect, referent control of movements. Instead of integration of velocity-dependent signals, position-dimensional referent signals underlying head motion can likely be transmitted to motoneurons of extraocular muscles. This would produce compensatory eye movement preventing shifts in gaze during head rotation, even after bilateral destruction of the labyrinths. The referent control framework symbolizes a shift in the paradigm for the understanding of VOR and eye and head movement production.


Subject(s)
Eye Movements/physiology , Head Movements/physiology , Motor Activity/physiology , Motor Neurons/physiology , Oculomotor Muscles/physiology , Reflex, Vestibulo-Ocular/physiology , Superior Colliculi/physiology , Humans
12.
J Neurophysiol ; 123(5): 1756-1765, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32233891

ABSTRACT

Reaching from standing requires simultaneous adjustments of focal and postural task elements. We investigated the ability of people with stroke to stabilize the endpoint trajectory while maintaining balance during standing reaches. Nineteen stroke and 11 age-equivalent healthy subjects reached toward a target (n = 30 trials) located beyond arm length from standing. Endpoint and center-of-mass (COM) trajectories were analyzed using the uncontrolled manifold (UCM) approach, with segment angles as elemental variables. A synergy index (SI) represented the normalized difference between segment angle combinations, leading to endpoint or COM trajectory stabilization (VUCM) and lack of stabilization (in an orthogonal space; VORT). A higher SI reflects greater stability. In both groups, the endpoint SI (SIEND) decreased in parallel with endpoint velocity and returned close to baseline at the end of the movement. The range of SIEND was significantly greater in stroke (median: 0.87; QR:0.54) compared with healthy subjects (median: 0.58; QR: 0.33; P = 0.009). In both groups, the lowest SIEND occurred at the endpoint peak velocity, whereas the minimal SIEND of the stroke group (median: 0.51; QR:0.41) was lower than the healthy group (median: 0.25; QR: 0.50; P = 0.033). The COM SI (SICOM) remained stable in both groups (~0.8). The maintenance of a high SICOM despite a large reduction of SIEND in stroke subjects suggests that kinematic redundancy was effectively used to stabilize the COM position, but less so for endpoint position stabilization. Both focal and postural task elements should be considered when analyzing whole body reaching deficits in patients with stroke.NEW & NOTEWORTHY Reaching from standing requires simultaneous adjustments of endpoint and center-of-mass (COM) positions. We used uncontrolled manifold analysis to investigate the impact of stroke on the ability to use kinematic redundancy in this task. Our results showed that COM position was stabilized, whereas endpoint trajectory was more variable in stroke than healthy subjects. Enhancing the capacity to meet multiple task goals may be beneficial for motor recovery after stroke.


Subject(s)
Biomechanical Phenomena/physiology , Motor Activity/physiology , Standing Position , Stroke/physiopathology , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
13.
Dev Psychobiol ; 62(6): 711-722, 2020 09.
Article in English | MEDLINE | ID: mdl-31957019

ABSTRACT

The empirically based referent control theory of motor actions provides a new framework for understanding locomotor maturation. Mature movement patterns of referent control are characterized by periods of minimization of activity across multiple muscles (global electromyographic [EMG] minima) resulting from transient matching between actual and referent body configurations. We identified whether locomotor maturation in young children was associated with (a) development of referent control and (b) children's frequency of participation in everyday activities evaluated by parents. Kinematics and EMG activity were recorded from typically developing children (n = 15, 3-5 years) and young adults (n = 10, 18-25 years) while walking, vertical or forward jumping. Presence and location of global EMG minima in movement cycles, slopes of ankle vertical/sagittal displacements, and shoulder displacement ratios were evaluated. Children had fewer global EMG minima compared to adults during specific phases of vertical and forward jumps. Ankle displacement profiles for walking and jumping forward were related to each other in adults, whereas those for walking and vertical jumping were related in children. Higher frequency of participation was significantly correlated with more mature jumping patterns in children. A decrease in the number of global EMG minima and changes in ankle movement patterns could be indicators of locomotor immaturity in typically developing children.


Subject(s)
Ankle/physiology , Child Development/physiology , Motor Activity/physiology , Motor Skills/physiology , Muscle, Skeletal/physiology , Walking/physiology , Adult , Biomechanical Phenomena , Child, Preschool , Electromyography , Female , Humans , Male , Young Adult
14.
Exp Brain Res ; 238(2): 369-379, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31927697

ABSTRACT

Previous studies suggest that visual information is essential for balance and stability of locomotion. We investigated whether visual deprivation is met with active reactions tending to minimize worsening balance and stability during walking in humans. We evaluated effects of vision on kinetic characteristics of walking on a treadmill-ground reaction forces (GRFs) and shifts in the center of mass (COM). Young adults (n = 10) walked on a treadmill at a comfortable speed. We measured three orthogonal components of GRFs and COM shifts during no-vision (NV) and full-vision (FV) conditions. We also computed the dynamic balance index (DN)-the perpendicular distance from the projection of center of mass (pCOM) to the inter-foot line (IFL) normalized to half of the foot length. Locally weighted regression smoothing with alpha-adjusted serial T tests was used to compare GRFs and DN between two conditions during the entire stance phase. Results showed significant differences in GRFs between FV and NV conditions in vertical and ML directions. Variability of peak forces of all three components of GRF increased in NV condition. We also observed significant increase in DN for NV condition in eight out of ten subjects. The pCOM was kept within BOS during walking, in both conditions, suggesting that body stability was actively controlled by adjusting three components of GRFs during NV walking to minimize stability loss and preserve balance.


Subject(s)
Biomechanical Phenomena/physiology , Postural Balance/physiology , Vision, Ocular/physiology , Walking/physiology , Adult , Exercise Test/methods , Female , Foot/physiology , Humans , Locomotion/physiology , Male
15.
Exp Brain Res ; 237(7): 1655-1672, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30976821

ABSTRACT

To evaluate normal and impaired control of anticipatory grip force (GF) modulation, we compared GF production during horizontal arm movements in healthy and post-stroke subjects, and, based on a physiologically feasible dynamic model, determined referent control variables underlying the GF-arm motion coordination in each group. 63% of 13 healthy and 48% of 13 stroke subjects produced low sustained initial force (< 10 N) and increased GF prior to arm movement. Movement-related GF increases were higher during fast compared to self-paced arm extension movements only in the healthy group. Differences in the patterns of anticipatory GF increases before the arm movement onset between groups occurred during fast extension arm movement only. In the stroke group, longer delays between the onset of GF change and elbow motion were related to clinical upper limb deficits. Simulations showed that GFs could emerge from the difference between the actual and the referent hand aperture (Ra) specified by the CNS. Similarly, arm movement could result from changes in the referent elbow position (Re) and could be affected by the co-activation (C) command. A subgroup of stroke subjects, who increased GF before arm movement, could specify different patterns of the referent variables while reproducing the healthy typical pattern of GF-arm coordination. Stroke subjects, who increased GF after arm movement onset, also used different referent strategies than controls. Thus, altered anticipatory GF behavior in stroke subjects may be explained by deficits in referent control.


Subject(s)
Anticipation, Psychological/physiology , Hand Strength/physiology , Movement/physiology , Psychomotor Performance/physiology , Stroke/physiopathology , Stroke/psychology , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
16.
J Neurophysiol ; 121(3): 823-841, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30565957

ABSTRACT

Many neurons of the primary motor cortex (M1) are maximally sensitive to "preferred" hand movement directions and generate progressively less activity with movements away from these directions. M1 activity also correlates with other biomechanical variables. These findings are predominantly interpreted in a framework in which the brain preprograms and directly specifies the desired motor outcome. This approach is inconsistent with the empirically derived equilibrium-point hypothesis, in which the brain can control motor actions only indirectly, by changing neurophysiological parameters that may influence, but remain independent of, biomechanical variables. The controversy is resolved on the basis of experimental findings and theoretical analysis of how sensory and central influences are integrated in the presence of the fundamental nonlinearity of neurons: electrical thresholds. In the presence of sensory inputs, electrical thresholds are converted into spatial thresholds that predetermine the position of the body segments at which muscles begin to be activated. Such thresholds may be considered as referent points of respective spatial frames of reference (FRs) in which neurons, including motoneurons, are centrally predetermined to work. By shifting the referent points of respective FRs, the brain elicits intentional actions. Pure involuntary reactions to perturbations are accomplished in motionless FRs. Neurons are primarily sensitive to shifts in referent directions, i.e., shifts in spatial FRs, whereas emergent neural activity may or may not correlate with different biomechanical variables depending on the motor task and external conditions. Indirect, referent control of posture and movement symbolizes a departure from conventional views based on direct preprogramming of the motor outcome.


Subject(s)
Motor Neurons/physiology , Motor Skills , Spatial Learning , Adaptation, Physiological , Animals , Humans
17.
J Neurophysiol ; 120(6): 3026-3041, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30207862

ABSTRACT

Body orientation with respect to the direction of gravity changes when we lean forward from upright standing. We tested the hypothesis that during upright standing, the nervous system specifies the referent body orientation that defines spatial thresholds for activation of multiple muscles across the body. To intentionally lean the body forward, the system is postulated to transfer balance and stability to the leaned position by monotonically tilting the referent orientation, thus increasing the activation thresholds of ankle extensors and decreasing their activity. Consequently, the unbalanced gravitational torque would start to lean the body forward. With restretching, ankle extensors would be reactivated and generate increasing electromyographic (EMG) activity until the enhanced gravitational torque would be balanced at a new posture. As predicted, vestibular influences on motoneurons of ankle extensors evaluated by galvanic vestibular stimulation were smaller in the leaned compared with the upright position, despite higher tonic EMG activity. Defacilitation of vestibular influences was also observed during forward leaning when the EMG levels in the upright and leaned position were equalized by compensating the gravitational torque with a load. The vestibular system is involved in the active control of body orientation without directly specifying the motor outcome. Corticospinal influences originating from the primary motor cortex evaluated by transcranial magnetic stimulation remained similar at the two body postures. Thus, in contrast to the vestibular system, the corticospinal system maintains a similar descending facilitation of motoneurons of leg muscles at different body orientations. The study advances the understanding of how body orientation is controlled. NEW & NOTEWORTHY The brain changes the referent body orientation with respect to gravity to lean the body forward. Physiologically, this is achieved by shifts in spatial thresholds for activation of ankle muscles, which involves the vestibular system. Results advance the understanding of how the brain controls body orientation in the gravitational field. The study also extends previous evidence of empirical control of motor function, i.e., without the reliance on model-based computations and direct specification of motor outcome.


Subject(s)
Gravitation , Orientation , Posture , Pyramidal Tracts/physiology , Vestibule, Labyrinth/physiology , Adolescent , Adult , Brain/physiology , Female , Humans , Male , Middle Aged , Movement , Muscle, Skeletal/physiology , Torque , Vestibule, Labyrinth/innervation
18.
Clin Neurophysiol ; 129(10): 2065-2074, 2018 10.
Article in English | MEDLINE | ID: mdl-30077867

ABSTRACT

OBJECTIVES: Deficits in regulation of tonic stretch reflex thresholds (TSRTs) after stroke occur in elbow flexors and extensors leading to spasticity in specific joint ranges. Threshold deregulation may also be responsible for other deficits such as abnormal activation of passively shortening muscles. Goals were to characterize activation of shortening elbow extensors during passive elbow flexor stretch in individuals with stroke, and identify its relationship to upper-limb motor impairment. METHODS: Thirty-three participants with unilateral stroke participated. TSRTs in elbow flexors were measured by stretching passive elbow flexors at different velocities. EMG responses were recorded from stretched agonist (biceps) and shortened antagonist (triceps) muscles. RESULTS: Triceps activation during passive biceps stretch occurred in all but 4 participants simultaneously with, before or after biceps activation onset. Biceps and triceps activation onsets and durations decreased with stretch velocity. Biceps TSRT and triceps activation magnitude did not correlate with sensorimotor impairment but greater stroke chronicity tended to be related to higher biceps TSRTs (r = 0.406, p = 0.041). CONCLUSIONS: Stroke may result in both limitations in reciprocal inhibition and excessive agonist-antagonist co-activation, likely from deficits in TSRT modulation in both muscle groups. SIGNIFICANCE: Since both reciprocal inhibition and co-activation are fundamental to normal motor control, their cooperative action should be considered in designing interventions to increase the ranges of regulation of TSRTs in flexors and extensors to enhance upper limb functional recovery.


Subject(s)
Elbow/physiopathology , Muscle Spasticity/physiopathology , Muscle Stretching Exercises , Muscle, Skeletal/physiopathology , Stroke/physiopathology , Aged , Female , Humans , Male , Middle Aged , Muscle Contraction , Muscle Spasticity/etiology , Stroke/complications , Stroke Rehabilitation
19.
J Neurophysiol ; 119(1): 5-20, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28904099

ABSTRACT

Previous motor learning studies based on adapting movements of the hemiparetic arm in stroke subjects have not accounted for spasticity occurring in specific joint ranges (spasticity zones), resulting in equivocal conclusions about learning capacity. We compared the ability of participants with stroke to rapidly adapt elbow extension movements to changing external load conditions outside and inside spasticity zones. Participants with stroke ( n = 12, aged 57.8 ± 9.6 yr) and healthy age-matched controls ( n = 8, 63.5 ± 9.1 yr) made rapid 40°-50° horizontal elbow extension movements from an initial (3°) to a final (6°) target. Sixteen blocks (6-10 trials/block) consisting of alternating loaded (30% maximal voluntary contraction) and nonloaded trials were made in one (controls) or two sessions (stroke; 1 wk apart). For the stroke group, the tonic stretch reflex threshold angle at which elbow flexors began to be activated during passive elbow extension was used to identify the beginning of the spasticity zone. The task was repeated in joint ranges that did or did not include the spasticity zone. Error correction strategies were identified by the angular positions before correction and compared between groups and sessions. Changes in load condition from no load to load and vice versa resulted in undershoot and overshoot errors, respectively. Stroke subjects corrected errors in 1-4 trials compared with 1-2 trials in controls. When movements did not include the spasticity zone, there was an immediate decrease in the number of trials needed to restore accuracy, suggesting that the capacity to learn may be preserved after stroke but masked by the presence of spasticity. NEW & NOTEWORTHY When arm movements were made outside, instead of inside, the range affected by spasticity, there was an immediate decrease in the number of trials needed to restore accuracy in response to a change in the external load. This suggests that motor learning processes may be preserved in patients with stroke but masked by the presence of spasticity in specific joint ranges. This has important implications for designing rehabilitation interventions predicated on motor learning principles.


Subject(s)
Learning , Movement , Stroke/physiopathology , Aged , Case-Control Studies , Elbow/physiopathology , Female , Humans , Male , Middle Aged , Muscle Spasticity/physiopathology , Muscle, Skeletal/physiopathology
20.
Exp Brain Res ; 236(2): 381-398, 2018 02.
Article in English | MEDLINE | ID: mdl-29164285

ABSTRACT

This study addresses the question of how posture and movement are oriented with respect to the direction of gravity. It is suggested that neural control levels coordinate spatial thresholds at which multiple muscles begin to be activated to specify a referent body orientation (RO) at which muscle activity is minimized. Under the influence of gravity, the body is deflected from the RO to an actual orientation (AO) until the emerging muscle activity and forces begin to balance gravitational forces and maintain body stability. We assumed that (1) during quiet standing on differently tilted surfaces, the same RO and thus AO can be maintained by adjusting activation thresholds of ankle muscles according to the surface tilt angle; (2) intentional forward body leaning results from monotonic ramp-and-hold shifts in the RO; (3) rhythmic oscillation of the RO about the ankle joints during standing results in body swaying. At certain sway phases, the AO and RO may transiently overlap, resulting in minima in the activity of multiple muscles across the body. EMG kinematic patterns of the 3 tasks were recorded and explained based on the RO concept that implies that these patterns emerge due to referent control without being pre-programmed. We also confirmed the predicted occurrence of minima in the activity of multiple muscles at specific body configurations during swaying. Results re-affirm previous rejections of model-based computational theories of motor control. The role of different descending systems in the referent control of posture and movement in the gravitational field is considered.


Subject(s)
Gravitation , Movement/physiology , Orientation/physiology , Posture/physiology , Adult , Analysis of Variance , Electromyography , Evoked Potentials, Motor/physiology , Female , Humans , Male , Muscle, Skeletal/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...