Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
STAR Protoc ; 5(1): 102827, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38219151

ABSTRACT

Here, we present a protocol to differentiate induced pluripotent stem cell (iPSC) into adherent hematopoietic progenitors that release floating CD14+ CD45+ monocytes into the culture medium. We describe steps for iPSC expansion, embryoid body (EB) formation, suspension culture, plating EBs, and recurring harvests of monocytes, a.k.a. "monocyte factory." We then describe detailed procedures for freezing/thawing of monocytes and differentiation into polarized M1 and M2 macrophages. This protocol provides foundation to study iPSC monocytes and their progenies such as macrophages, microglial, and dendritic cells. For complete details on the use and execution of this protocol, please refer to Karlson et al.1 and Panicker et al.2.


Subject(s)
Induced Pluripotent Stem Cells , Monocytes , Humans , Macrophages , Cell Differentiation , Embryoid Bodies
2.
Hum Mol Genet ; 32(11): 1888-1900, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36752535

ABSTRACT

Bi-allelic mutations in GBA1, the gene that encodes ß-glucocerebrosidase (GCase), cause Gaucher disease (GD), whereas mono-allelic mutations do not cause overt pathology. Yet mono- or bi-allelic GBA1 mutations are the highest known risk factor for Parkinson's disease (PD). GCase deficiency results in the accumulation of glucosylceramide (GluCer) and its deacylated metabolite glucosylsphingosine (GluSph). Brains from patients with neuronopathic GD have high levels of GluSph, and elevation of this lipid in GBA1-associated PD has been reported. To uncover the mechanisms involved in GBA1-associated PD, we used human induced pluripotent stem cell-derived dopaminergic (DA) neurons from patients harboring heterozygote mutations in GBA1 (GBA1/PD-DA neurons). We found that compared with gene-edited isogenic controls, GBA1/PD-DA neurons exhibit mammalian target of rapamycin complex 1 (mTORC1) hyperactivity, a block in autophagy, an increase in the levels of phosphorylated α-synuclein (129) and α-synuclein aggregation. These alterations were prevented by incubation with mTOR inhibitors. Inhibition of acid ceramidase, the lysosomal enzyme that deacylates GluCer to GluSph, prevented mTOR hyperactivity, restored autophagic flux and lowered α-synuclein levels, suggesting that GluSph was responsible for these alterations. Incubation of gene-edited wild type (WT) controls with exogenous GluSph recapitulated the mTOR/α-synuclein abnormalities of GBA1/PD neurons, and these phenotypic alterations were prevented when GluSph treatment was in the presence of mTOR inhibitors. We conclude that GluSph causes an aberrant activation of mTORC1, suppressing normal lysosomal functions, including the clearance of pathogenic α-synuclein species. Our results implicate acid ceramidase in the pathogenesis of GBA1-associated PD, suggesting that this enzyme is a potential therapeutic target for treating synucleinopathies caused by GCase deficiency.


Subject(s)
Gaucher Disease , Induced Pluripotent Stem Cells , Parkinson Disease , Humans , Parkinson Disease/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Induced Pluripotent Stem Cells/metabolism , MTOR Inhibitors , Acid Ceramidase/genetics , Acid Ceramidase/metabolism , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Gaucher Disease/metabolism , Dopaminergic Neurons/metabolism , TOR Serine-Threonine Kinases/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mutation , Lysosomes/metabolism
3.
Elife ; 112022 08 22.
Article in English | MEDLINE | ID: mdl-35993545

ABSTRACT

Experiments in genetically altered mice reveal that microglia play an important role in the neurological damage associated with neuro-nopathic Gaucher disease.


Subject(s)
Gaucher Disease , Microglia , Animals , Inflammation , Mice , Mice, Inbred C57BL , Neuroinflammatory Diseases
4.
Int J Mol Sci ; 22(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576075

ABSTRACT

Gaucher disease (GD) is an autosomal recessive disorder caused by bi-allelic GBA1 mutations that reduce the activity of the lysosomal enzyme ß-glucocerebrosidase (GCase). GCase catalyzes the conversion of glucosylceramide (GluCer), a ubiquitous glycosphingolipid, to glucose and ceramide. GCase deficiency causes the accumulation of GluCer and its metabolite glucosylsphingosine (GluSph) in a number of tissues and organs. In the immune system, GCase deficiency deregulates signal transduction events, resulting in an inflammatory environment. It is known that the complement system promotes inflammation, and complement inhibitors are currently being considered as a novel therapy for GD; however, the mechanism by which complement drives systemic macrophage-mediated inflammation remains incompletely understood. To help understand the mechanisms involved, we used human GD-induced pluripotent stem cell (iPSC)-derived macrophages. We found that GD macrophages exhibit exacerbated production of inflammatory cytokines via an innate immune response mediated by receptor 1 for complement component C5a (C5aR1). Quantitative RT-PCR and ELISA assays showed that in the presence of recombinant C5a (rC5a), GD macrophages secreted 8-10-fold higher levels of TNF-α compared to rC5a-stimulated control macrophages. PMX53, a C5aR1 blocker, reversed the enhanced GD macrophage TNF-α production, indicating that the observed effect was predominantly C5aR1-mediated. To further analyze the extent of changes induced by rC5a stimulation, we performed gene array analysis of the rC5a-treated macrophage transcriptomes. We found that rC5a-stimulated GD macrophages exhibit increased expression of genes involved in TNF-α inflammatory responses compared to rC5a-stimulated controls. Our results suggest that rC5a-induced inflammation in GD macrophages activates a unique immune response, supporting the potential use of inhibitors of the C5a-C5aR1 receptor axis to mitigate the chronic inflammatory abnormalities associated with GD.


Subject(s)
Complement C5a/pharmacology , Gaucher Disease/pathology , Gene Expression Profiling , Gene Expression Regulation , Induced Pluripotent Stem Cells/metabolism , Inflammation/genetics , Macrophages/metabolism , Cell Line , Gene Expression Regulation/drug effects , Humans , Induced Pluripotent Stem Cells/drug effects , Inflammation/pathology , Macrophages/drug effects , Macrophages/pathology , Oxidation-Reduction , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/metabolism , Recombinant Proteins/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Wnt Signaling Pathway/drug effects
5.
Cells ; 10(9)2021 09 02.
Article in English | MEDLINE | ID: mdl-34571934

ABSTRACT

Substrate reduction therapy (SRT) in clinic adequately manages the visceral manifestations in Gaucher disease (GD) but has no direct effect on brain disease. To understand the molecular basis of SRT in GD treatment, we evaluated the efficacy and underlying mechanism of SRT in an immortalized neuronal cell line derived from a Gba knockout (Gba-/-) mouse model. Gba-/- neurons accumulated substrates, glucosylceramide, and glucosylsphingosine. Reduced cell proliferation was associated with altered lysosomes and autophagy, decreased mitochondrial function, and activation of the mTORC1 pathway. Treatment of the Gba-/- neurons with venglustat analogue GZ452, a central nervous system-accessible SRT, normalized glucosylceramide levels in these neurons and their isolated mitochondria. Enlarged lysosomes were reduced in the treated Gba-/- neurons, accompanied by decreased autophagic vacuoles. GZ452 treatment improved mitochondrial membrane potential and oxygen consumption rate. Furthermore, GZ452 diminished hyperactivity of selected proteins in the mTORC1 pathway and improved cell proliferation of Gba-/- neurons. These findings reinforce the detrimental effects of substrate accumulation on mitochondria, autophagy, and mTOR in neurons. A novel rescuing mechanism of SRT was revealed on the function of mitochondrial and autophagy-lysosomal pathways in GD. These results point to mitochondria and the mTORC1 complex as potential therapeutic targets for treatment of GD.


Subject(s)
Autophagy , Gaucher Disease/drug therapy , Glucosylceramidase/antagonists & inhibitors , Glycoside Hydrolase Inhibitors/pharmacology , Mitochondria/drug effects , Neurons/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , Gaucher Disease/metabolism , Gaucher Disease/pathology , Glucosylceramidase/physiology , Lysosomes/drug effects , Lysosomes/metabolism , Lysosomes/pathology , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondria/pathology , Neurons/metabolism , Neurons/pathology , TOR Serine-Threonine Kinases/genetics
6.
Elife ; 102021 03 29.
Article in English | MEDLINE | ID: mdl-33779549

ABSTRACT

The downregulation of sclerostin in osteocytes mediates bone formation in response to mechanical cues and parathyroid hormone (PTH). To date, the regulation of sclerostin has been attributed exclusively to the transcriptional downregulation of the Sost gene hours after stimulation. Using mouse models and rodent cell lines, we describe the rapid, minute-scale post-translational degradation of sclerostin protein by the lysosome following mechanical load and PTH. We present a model, integrating both new and established mechanically and hormonally activated effectors into the regulated degradation of sclerostin by lysosomes. Using a mouse forelimb mechanical loading model, we find transient inhibition of lysosomal degradation or the upstream mechano-signaling pathway controlling sclerostin abundance impairs subsequent load-induced bone formation by preventing sclerostin degradation. We also link dysfunctional lysosomes to aberrant sclerostin regulation using human Gaucher disease iPSCs. These results reveal how bone anabolic cues post-translationally regulate sclerostin abundance in osteocytes to regulate bone formation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Bone Morphogenetic Proteins/metabolism , Lysosomes/metabolism , Osteocytes/metabolism , Osteogenesis/drug effects , Animals , Bone and Bones/metabolism , Cell Line , Cues , Down-Regulation/drug effects , Female , Gaucher Disease/metabolism , Genetic Markers , Humans , Male , Mice , Mice, Inbred C57BL , Parathyroid Hormone/metabolism , Parathyroid Hormone/pharmacology , Rats , Signal Transduction/drug effects
7.
Stem Cells Transl Med ; 10(7): 1081-1094, 2021 07.
Article in English | MEDLINE | ID: mdl-33656802

ABSTRACT

Gaucher disease (GD) is a lysosomal storage disorder caused by mutations in GBA1, the gene that encodes lysosomal ß-glucocerebrosidase (GCase). Mild mutations in GBA1 cause type 1 non-neuronopathic GD, whereas severe mutations cause types 2 and 3 neuronopathic GD (nGD). GCase deficiency results in the accumulation of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). GlcSph is formed by deacylation of GlcCer by the lysosomal enzyme acid ceramidase. Brains from patients with nGD have high levels of GlcSph, a lipid believed to play an important role in nGD, but the mechanisms involved remain unclear. To identify these mechanisms, we used human induced pluripotent stem cell-derived neurons from nGD patients. We found that elevated levels of GlcSph activate mammalian target of rapamycin (mTOR) complex 1 (mTORC1), interfering with lysosomal biogenesis and autophagy, which were restored by incubation of nGD neurons with mTOR inhibitors. We also found that inhibition of acid ceramidase prevented both, mTOR hyperactivity and lysosomal dysfunction, suggesting that these alterations were caused by GlcSph accumulation in the mutant neurons. To directly determine whether GlcSph can cause mTOR hyperactivation, we incubated wild-type neurons with exogenous GlcSph. Remarkably, GlcSph treatment recapitulated the mTOR hyperactivation and lysosomal abnormalities in mutant neurons, which were prevented by coincubation of GlcSph with mTOR inhibitors. We conclude that elevated GlcSph activates an mTORC1-dependent pathogenic mechanism that is responsible for the lysosomal abnormalities of nGD neurons. We also identify acid ceramidase as essential to the pathogenesis of nGD, providing a new therapeutic target for treating GBA1-associated neurodegeneration.


Subject(s)
Gaucher Disease , Induced Pluripotent Stem Cells , Mechanistic Target of Rapamycin Complex 1 , Neurons , Psychosine/analogs & derivatives , Acid Ceramidase/antagonists & inhibitors , Gaucher Disease/drug therapy , Gaucher Disease/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Lysosomes , MTOR Inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Neurons/cytology , Psychosine/blood
8.
Biomolecules ; 10(12)2020 12 03.
Article in English | MEDLINE | ID: mdl-33287247

ABSTRACT

Gaucher Disease (GD), which is the most common lysosomal storage disorder, is caused by bi-allelic mutations in GBA1-a gene that encodes the lysosomal hydrolase ß-glucocerebrosidase (GCase). The neuronopathic forms of GD (nGD) are characterized by severe neurological abnormalities that arise during gestation or early in infancy. Using GD-induced pluripotent stem cell (iPSC)-derived neuronal progenitor cells (NPCs), we have previously reported that neuronal cells have neurodevelopmental defects associated with the downregulation of canonical Wnt signaling. In this study, we report that GD NPCs display elevated levels of Dkk1, which is a secreted Wnt antagonist that prevents receptor activation. Dkk1 upregulation in mutant NPCs resulted in an increased degradation of ß-catenin, and there was a concomitant reduction in lysosomal numbers. Consistent with these results, incubation of the mutant NPCs with recombinant Wnt3a (rWnt3a) was able to outcompete the excess Dkk1, increasing ß-catenin levels and rescuing lysosomal numbers. Furthermore, the incubation of WT NPCs with recombinant Dkk1 (rDkk1) phenocopied the mutant phenotype, recapitulating the decrease in ß-catenin levels and lysosomal depletion seen in nGD NPCs. This study provides evidence that downregulation of the Wnt/ß-catenin pathway in nGD neuronal cells involves the upregulation of Dkk1. As Dkk1 is an extracellular Wnt antagonist, our results suggest that the deleterious effects of Wnt/ß-catenin downregulation in nGD may be ameliorated by the prevention of Dkk1 binding to the Wnt co-receptor LRP6, pointing to Dkk1 as a potential therapeutic target for GBA1-associated neurodegeneration.


Subject(s)
Down-Regulation , Gaucher Disease/pathology , Induced Pluripotent Stem Cells/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Lysosomes/metabolism , Wnt Signaling Pathway , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/pathology
9.
Autophagy ; 16(1): 140-153, 2020 01.
Article in English | MEDLINE | ID: mdl-30957634

ABSTRACT

Recent studies indicate a causative relationship between defects in autophagy and dopaminergic neuron degeneration in Parkinson disease (PD). However, it is not fully understood how autophagy is regulated in the context of PD. Here we identify USP24 (ubiquitin specific peptidase 24), a gene located in the PARK10 (Parkinson disease 10 [susceptibility]) locus associated with late onset PD, as a novel negative regulator of autophagy. Our data indicate that USP24 regulates autophagy by affecting ubiquitination and stability of the ULK1 protein. Knockdown of USP24 in cell lines and in human induced-pluripotent stem cells (iPSC) differentiated into dopaminergic neurons resulted in elevated ULK1 protein levels and increased autophagy flux in a manner independent of MTORC1 but dependent on the class III phosphatidylinositol 3-kinase (PtdIns3K) activity. Surprisingly, USP24 knockdown also improved neurite extension and/or maintenance in aged iPSC-derived dopaminergic neurons. Furthermore, we observed elevated levels of USP24 in the substantia nigra of a subpopulation of idiopathic PD patients, suggesting that USP24 may negatively regulate autophagy in PD.Abbreviations: Bafilomycin/BafA: bafilomycin A1; DUB: deubiquitinating enzyme; iPSC: induced pluripotent stem cells; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; nt: non-targeting; PD: Parkinson disease; p-ATG13: phospho-ATG13; PtdIns3P: phosphatidylinositol 3-phosphate; RPS6: ribosomal protein S6; SNPs: single nucleotide polymorphisms; TH: tyrosine hydroxylase; USP24: ubiquitin specific peptidase 24.


Subject(s)
Autophagy-Related Protein-1 Homolog/genetics , Intracellular Signaling Peptides and Proteins/genetics , Parkinson Disease/genetics , Ubiquitin Thiolesterase/genetics , Autophagy/genetics , Autophagy/physiology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Parkinson Disease/metabolism , Transcription Factors/metabolism
10.
Dis Model Mech ; 12(10)2019 10 16.
Article in English | MEDLINE | ID: mdl-31519738

ABSTRACT

Bi-allelic GBA1 mutations cause Gaucher's disease (GD), the most common lysosomal storage disorder. Neuronopathic manifestations in GD include neurodegeneration, which can be severe and rapidly progressive. GBA1 mutations are also the most frequent genetic risk factors for Parkinson's disease. Dysfunction of the autophagy-lysosomal pathway represents a key pathogenic event in GBA1-associated neurodegeneration. Using an induced pluripotent stem cell (iPSC) model of GD, we previously demonstrated that lysosomal alterations in GD neurons are linked to dysfunction of the transcription factor EB (TFEB). TFEB controls the coordinated expression of autophagy and lysosomal genes and is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1). To further investigate the mechanism of autophagy-lysosomal pathway dysfunction in neuronopathic GD, we examined mTORC1 kinase activity in GD iPSC neuronal progenitors and differentiated neurons. We found that mTORC1 is hyperactive in GD cells as evidenced by increased phosphorylation of its downstream protein substrates. We also found that pharmacological inhibition of glucosylceramide synthase enzyme reversed mTORC1 hyperactivation, suggesting that increased mTORC1 activity is mediated by the abnormal accumulation of glycosphingolipids in the mutant cells. Treatment with the mTOR inhibitor Torin1 upregulated lysosomal biogenesis and enhanced autophagic clearance in GD neurons, confirming that lysosomal dysfunction is mediated by mTOR hyperactivation. Further analysis demonstrated that increased TFEB phosphorylation by mTORC1 results in decreased TFEB stability in GD cells. Our study uncovers a new mechanism contributing to autophagy-lysosomal pathway dysfunction in GD, and identifies the mTOR complex as a potential therapeutic target for treatment of GBA1-associated neurodegeneration.


Subject(s)
Gaucher Disease/pathology , Induced Pluripotent Stem Cells/pathology , Lysosomes/pathology , Mechanistic Target of Rapamycin Complex 1/metabolism , Neurons/metabolism , Autophagy/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Biomarkers/metabolism , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Green Fluorescent Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Lipids/chemistry , Lysosomes/drug effects , Lysosomes/metabolism , Naphthyridines/pharmacology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Protein Stability/drug effects , Up-Regulation/drug effects
11.
Hum Mol Genet ; 27(5): 811-822, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29301038

ABSTRACT

Gaucher disease (GD) is caused by bi-allelic mutations in GBA1, the gene that encodes acid ß-glucocerebrosidase (GCase). Individuals affected by GD have hematologic, visceral and bone abnormalities, and in severe cases there is also neurodegeneration. To shed light on the mechanisms by which mutant GBA1 causes bone disease, we examined the ability of human induced pluripotent stem cells (iPSC) derived from patients with Types 1, 2 and 3 GD, to differentiate to osteoblasts and carry out bone deposition. Differentiation of GD iPSC to osteoblasts revealed that these cells had developmental defects and lysosomal abnormalities that interfered with bone matrix deposition. Compared with controls, GD iPSC-derived osteoblasts exhibited reduced expression of osteoblast differentiation markers, and bone matrix protein and mineral deposition were defective. Concomitantly, canonical Wnt/ß catenin signaling in the mutant osteoblasts was downregulated, whereas pharmacological Wnt activation with the GSK3ß inhibitor CHIR99021 rescued GD osteoblast differentiation and bone matrix deposition. Importantly, incubation with recombinant GCase (rGCase) rescued the differentiation and bone-forming ability of GD osteoblasts, demonstrating that the abnormal GD phenotype was caused by GCase deficiency. GD osteoblasts were also defective in their ability to carry out Ca2+-dependent exocytosis, a lysosomal function that is necessary for bone matrix deposition. We conclude that normal GCase enzymatic activity is required for the differentiation and bone-forming activity of osteoblasts. Furthermore, the rescue of bone matrix deposition by pharmacological activation of Wnt/ß catenin in GD osteoblasts uncovers a new therapeutic target for the treatment of bone abnormalities in GD.


Subject(s)
Gaucher Disease/pathology , Induced Pluripotent Stem Cells/pathology , Lysosomes/pathology , Osteoblasts/pathology , Bone Matrix/pathology , Case-Control Studies , Cell Differentiation/drug effects , Cells, Cultured , Exocytosis/genetics , Gaucher Disease/genetics , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Humans , Induced Pluripotent Stem Cells/physiology , Lysosomes/genetics , Mutation , Osteoblasts/drug effects , Osteoblasts/metabolism , Pyridines/pharmacology , Pyrimidines/pharmacology , Wnt Signaling Pathway , beta Catenin/metabolism
12.
Stem Cell Reports ; 9(6): 1853-1867, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29198828

ABSTRACT

Gaucher's disease (GD) is an autosomal recessive disorder caused by mutations in the GBA1 gene, which encodes acid ß-glucocerebrosidase (GCase). Severe GBA1 mutations cause neuropathology that manifests soon after birth, suggesting that GCase deficiency interferes with neuronal development. We found that neuronopathic GD induced pluripotent stem cell (iPSC)-derived neuronal progenitor cells (NPCs) exhibit developmental defects due to downregulation of canonical Wnt/ß-catenin signaling and that GD iPSCs' ability to differentiate to dopaminergic (DA) neurons was strikingly reduced due to early loss of DA progenitors. Incubation of the mutant cells with the Wnt activator CHIR99021 (CHIR) or with recombinant GCase restored Wnt/ß-catenin signaling and rescued DA differentiation. We also found that GD NPCs exhibit lysosomal dysfunction, which may be involved in Wnt downregulation by mutant GCase. We conclude that neuronopathic mutations in GCase lead to neurodevelopmental abnormalities due to a critical requirement of this enzyme for canonical Wnt/ß-catenin signaling at early stages of neurogenesis.


Subject(s)
Cell Differentiation/genetics , Dopaminergic Neurons/drug effects , Induced Pluripotent Stem Cells/pathology , Neurogenesis/genetics , Dopaminergic Neurons/pathology , Gaucher Disease/genetics , Gene Expression Regulation, Developmental/drug effects , Humans , Induced Pluripotent Stem Cells/metabolism , Lysosomes/genetics , Lysosomes/pathology , Mutation , Neural Stem Cells/drug effects , Neural Stem Cells/pathology , Pyridines/administration & dosage , Pyrimidines/administration & dosage , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/genetics
13.
Sci Rep ; 6: 26761, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27225733

ABSTRACT

Bone substitutes can be designed to replicate physiological structure and function by creating a microenvironment that supports crosstalk between bone and immune cells found in the native tissue, specifically osteoblasts and osteoclasts. Human induced pluripotent stem cells (hiPSC) represent a powerful tool for bone regeneration because they are a source of patient-specific cells that can differentiate into all specialized cell types residing in bone. We show that osteoblasts and osteoclasts can be differentiated from hiPSC-mesenchymal stem cells and macrophages when co-cultured on hydroxyapatite-coated poly(lactic-co-glycolic acid)/poly(L-lactic acid) (HA-PLGA/PLLA) scaffolds. Both cell types seeded on the PLGA/PLLA especially with 5% w/v HA recapitulated the tissue remodeling process of human bone via coupling signals coordinating osteoblast and osteoclast activity and finely tuned expression of inflammatory molecules, resulting in accelerated in vitro bone formation. Following subcutaneous implantation in rodents, co-cultured hiPSC-MSC/-macrophage on such scaffolds showed mature bone-like tissue formation. These findings suggest the importance of coupling matrix remodeling through osteoblastic matrix deposition and osteoclastic tissue resorption and immunomodulation for tissue development.


Subject(s)
Bone Regeneration/physiology , Induced Pluripotent Stem Cells/metabolism , Osteoblasts/physiology , Osteoclasts/physiology , Tissue Scaffolds , Animals , Cell Differentiation , Cells, Cultured , Coculture Techniques , Culture Media/pharmacology , Cytokines/biosynthesis , Cytokines/genetics , Durapatite , Extracellular Matrix/metabolism , Female , Heterografts , Humans , Lactic Acid , Macrophages/physiology , Mice, Nude , Osteoprotegerin/biosynthesis , Osteoprotegerin/genetics , Polyesters , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , RANK Ligand/biosynthesis , RANK Ligand/genetics
14.
J Biotechnol ; 221: 1-12, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26795355

ABSTRACT

Although recombinant glucocerebrosidase (GCase) is the standard therapy for the inherited lysosomal storage disease Gaucher's disease (GD), enzyme replacement is not effective when the central nervous system is affected. We created a series of recombinant genes/proteins where GCase was linked to different membrane binding peptides including the Tat peptide, the rabies glycoprotein derived peptide (RDP), the binding domain from tetanus toxin (TTC), and a tetanus like peptide (Tet1). The majority of these proteins were well-expressed in a mammalian producer cell line (HEK 293F). Purified recombinant Tat-GCase and RDP-GCase showed similar GCase protein delivery to a neuronal cell line that genetically lacks the functional enzyme, and greater delivery than control GCase, Cerezyme (Genzyme). This initial result was unexpected based on observations of superior protein delivery to neurons with RDP as a vector. A recombinant protein where a fragment of the flexible hinge region from IgA (IgAh) was introduced between RDP and GCase showed substantially enhanced GCase neuronal delivery (2.5 times over Tat-GCase), suggesting that the original construct resulted in interference with the capacity of RDP to bind neuronal membranes. Extended treatment of these knockout neuronal cells with either Tat-GCase or RDP-IgAh-GCase resulted in an >90% reduction in the lipid substrate glucosylsphingosine, approaching normal levels. Further in vivo studies of RDP-IgAh-GCase as well as Tat-GCase are warranted to assess their potential as treatments for neuronopathic forms of GD. These peptide vectors are especially attractive as they have the potential to carry a protein across the blood-brain barrier, avoiding invasive direct brain delivery.


Subject(s)
Glucosylceramidase/metabolism , Neurons/drug effects , Peptide Fragments/metabolism , Recombinant Proteins/pharmacology , Blood-Brain Barrier/drug effects , Cells, Cultured , Drug Design , Glucosylceramidase/genetics , HEK293 Cells , Humans , Neurons/cytology , Psychosine/analogs & derivatives , Psychosine/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
15.
Exp Cell Res ; 347(1): 1-13, 2016 09 10.
Article in English | MEDLINE | ID: mdl-26500109

ABSTRACT

The mechanisms by which macrophages control the inflammatory response, wound healing, biomaterial-interactions, and tissue regeneration appear to be related to their activation/differentiation states. Studies of macrophage behavior in vitro can be useful for elucidating their mechanisms of action, but it is not clear to what extent the source of macrophages affects their apparent behavior, potentially affecting interpretation of results. Although comparative studies of macrophage behavior with respect to cell source have been conducted, there has been no direct comparison of the three most commonly used cell sources: murine bone marrow, human monocytes from peripheral blood (PB), and the human leukemic monocytic cell line THP-1, across multiple macrophage phenotypes. In this study, we used multivariate discriminant analysis to compare the in vitro expression of genes commonly chosen to assess macrophage phenotype across all three sources of macrophages, as well as those derived from induced pluripotent stem cells (iPSCs), that were polarized towards four distinct phenotypes using the same differentiation protocols: M(LPS,IFN) (aka M1), M(IL4,IL13) (aka M2a), M(IL10) (aka M2c), and M(-) (aka M0) used as control. Several differences in gene expression trends were found among the sources of macrophages, especially between murine bone marrow-derived and human blood-derived M(LPS,IFN) and M(IL4,IL13) macrophages with respect to commonly used phenotype markers like CCR7 and genes associated with angiogenesis and tissue regeneration like FGF2 and MMP9. We found that the genes with the most similar patterns of expression among all sources were CXCL-10 and CXCL-11 for M(LPS,IFN) and CCL17 and CCL22 for M(IL4,IL13). Human PB-derived macrophages and human iPSC-derived macrophages showed similar gene expression patterns among the groups and genes studied here, suggesting that iPSC-derived monocytes have the potential to be used as a reliable cell source of human macrophages for in vitro studies. These findings could help select appropriate markers when testing macrophage behavior in vitro and highlight those markers that may confuse interpretation of results from experiments employing macrophages from different sources.


Subject(s)
Cell Polarity/genetics , Gene Expression Profiling , Macrophages/cytology , Macrophages/metabolism , Animals , Biocompatible Materials/pharmacology , Cell Differentiation/drug effects , Cell Line , Cell Polarity/drug effects , Discriminant Analysis , Gene Expression Regulation/drug effects , Humans , Interferon-gamma/pharmacology , Least-Squares Analysis , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mice, Inbred BALB C , Phenotype
16.
Hum Mol Genet ; 24(20): 5775-88, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26220978

ABSTRACT

Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase). The severe forms of GD are associated with neurodegeneration with either rapid (Type 2) or slow progression (Type 3). Although the neurodegenerative process in GD has been linked to lysosomal dysfunction, the mechanisms involved are largely unknown. To identify the lysosomal alterations in GD neurons and uncover the mechanisms involved, we used induced pluripotent stem cells (iPSCs) derived from patients with GD. In GD iPSC-derived neuronal cells (iPSC-NCs), GBA1 mutations caused widespread lysosomal depletion, and a block in autophagic flux due to defective lysosomal clearance of autophagosomes. Autophagy induction by rapamycin treatment in GD iPSC-NCs led to cell death. Further analysis showed that in GD iPSC-NCs, expression of the transcription factor EB (TFEB), the master regulator of lysosomal genes, and lysosomal gene expression, were significantly downregulated. There was also reduced stability of the TFEB protein and altered lysosomal protein biosynthesis. Treatment of mutant iPSC-NCs with recombinant GCase (rGCase) reverted the lysosomal depletion and autophagy block. The effect of rGCase on restoring lysosomal numbers in mutant cells was enhanced in the presence of overexpressed TFEB, but TFEB overexpression alone did not reverse the lysosomal depletion phenotype. Our results suggest that GBA1 mutations interfere with TFEB-mediated lysosomal biogenesis, and that the action of GCase in maintaining a functioning pool of lysosomes is exerted in part through TFEB. The lysosomal alterations described here are likely to be a major determinant in GBA1-associated neurodegeneration.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Gaucher Disease/physiopathology , Glucosylceramidase/genetics , Lysosomes/physiology , Neurons/physiology , Organelle Biogenesis , Cell Differentiation , Gaucher Disease/metabolism , Induced Pluripotent Stem Cells/physiology , Lysosomes/metabolism , Mutation , Neurons/metabolism
17.
Stem Cells Transl Med ; 4(8): 878-86, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26062980

ABSTRACT

Gaucher disease (GD) is the most common lysosomal storage disease resulting from mutations in the lysosomal enzyme glucocerebrosidase (GCase). The hematopoietic abnormalities in GD include the presence of characteristic Gaucher macrophages that infiltrate patient tissues and cytopenias. At present, it is not clear whether these cytopenias are secondary to the pathological activity of Gaucher cells or a direct effect of GCase deficiency on hematopoietic development. To address this question, we differentiated induced pluripotent stem cells (iPSCs) derived from patients with types 1, 2, and 3 GD to CD34(+)/CD45(+)/CD43(+)/CD143(+) hematopoietic progenitor cells (HPCs) and examined their developmental potential. The formation of GD-HPCs was unaffected. However, these progenitors demonstrated a skewed lineage commitment, with increased myeloid differentiation and decreased erythroid differentiation and maturation. Interestingly, myeloid colony-formation assays revealed that GD-HPCs, but not control-HPCs, gave rise to adherent, macrophage-like cells, another indication of abnormal myelopoiesis. The extent of these hematologic abnormalities correlated with the severity of the GCase mutations. All the phenotypic abnormalities of GD-HPCs observed were reversed by incubation with recombinant GCase, indicating that these developmental defects were caused by the mutated GCase. Our results show that GCase deficiency directly impairs hematopoietic development. Additionally, our results suggest that aberrant myelopoiesis might contribute to the pathological properties of Gaucher macrophages, which are central to GD manifestations. The hematopoietic developmental defects we observed reflect hematologic abnormalities in patients with GD, demonstrating the utility of GD-iPSCs for modeling this disease.


Subject(s)
Gaucher Disease/therapy , Hematopoiesis , Induced Pluripotent Stem Cells/transplantation , Myelopoiesis/physiology , Cell Differentiation , Cell Lineage , Gaucher Disease/pathology , Hematopoietic Stem Cells/pathology , Humans , Macrophages/pathology
18.
Stem Cells ; 32(9): 2338-49, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24801745

ABSTRACT

Gaucher disease (GD) is an autosomal recessive disorder caused by mutations in the acid ß-glucocerebrosidase (GCase; GBA) gene. The hallmark of GD is the presence of lipid-laden Gaucher macrophages, which infiltrate bone marrow and other organs. These pathological macrophages are believed to be the sources of elevated levels of inflammatory mediators present in the serum of GD patients. The alteration in the immune environment caused by GD is believed to play a role in the increased risk of developing multiple myeloma and other malignancies in GD patients. To determine directly whether Gaucher macrophages are abnormally activated and whether their functional defects can be reversed by pharmacological intervention, we generated GD macrophages by directed differentiation of human induced pluripotent stem cells (hiPSC) derived from patients with types 1, 2, and 3 GD. GD hiPSC-derived macrophages expressed higher levels of tumor necrosis factor α, IL-6, and IL-1ß than control cells, and this phenotype was exacerbated by treatment with lipopolysaccharide. In addition, GD hiPSC macrophages exhibited a striking delay in clearance of phagocytosed red blood cells, recapitulating the presence of red blood cell remnants in Gaucher macrophages from bone marrow aspirates. Incubation of GD hiPSC macrophages with recombinant GCase, or with the chaperones isofagomine and ambroxol, corrected the abnormal phenotypes of GD macrophages to an extent that reflected their known clinical efficacies. We conclude that Gaucher macrophages are the likely source of the elevated levels of inflammatory mediators in the serum of GD patients and that GD hiPSC are valuable new tools for studying disease mechanisms and drug discovery.


Subject(s)
Cytokines/biosynthesis , Gaucher Disease/metabolism , Gaucher Disease/pathology , Induced Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation/drug effects , Female , Gaucher Disease/genetics , Humans , Induced Pluripotent Stem Cells/pathology , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID
19.
Circulation ; 129(3): 359-72, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24163065

ABSTRACT

BACKGROUND: The generation of vascular progenitors (VPs) from human induced pluripotent stem cells (hiPSCs) has great potential for treating vascular disorders such as ischemic retinopathies. However, long-term in vivo engraftment of hiPSC-derived VPs into the retina has not yet been reported. This goal may be limited by the low differentiation yield, greater senescence, and poor proliferation of hiPSC-derived vascular cells. To evaluate the potential of hiPSCs for treating ischemic retinopathies, we generated VPs from a repertoire of viral-integrated and nonintegrated fibroblast and cord blood (CB)-derived hiPSC lines and tested their capacity for homing and engrafting into murine retina in an ischemia-reperfusion model. METHODS AND RESULTS: VPs from human embryonic stem cells and hiPSCs were generated with an optimized vascular differentiation system. Fluorescence-activated cell sorting purification of human embryoid body cells differentially expressing endothelial/pericytic markers identified a CD31(+)CD146(+) VP population with high vascular potency. Episomal CB-induced pluripotent stem cells (iPSCs) generated these VPs with higher efficiencies than fibroblast-iPSC. Moreover, in contrast to fibroblast-iPSC-VPs, CB-iPSC-VPs maintained expression signatures more comparable to human embryonic stem cell VPs, expressed higher levels of immature vascular markers, demonstrated less culture senescence and sensitivity to DNA damage, and possessed fewer transmitted reprogramming errors. Luciferase transgene-marked VPs from human embryonic stem cells, CB-iPSCs, and fibroblast-iPSCs were injected systemically or directly into the vitreous of retinal ischemia-reperfusion-injured adult nonobese diabetic-severe combined immunodeficient mice. Only human embryonic stem cell- and CB-iPSC-derived VPs reliably homed and engrafted into injured retinal capillaries, with incorporation into damaged vessels for up to 45 days. CONCLUSIONS: VPs generated from CB-iPSCs possessed augmented capacity to home, integrate into, and repair damaged retinal vasculature.


Subject(s)
Embryonic Stem Cells/cytology , Fetal Blood/cytology , Pluripotent Stem Cells/cytology , Reperfusion Injury/therapy , Retinal Diseases/therapy , Stem Cell Transplantation/methods , Animals , Capillaries/cytology , Cellular Senescence , DNA Damage , Disease Models, Animal , Fibroblasts/cytology , Graft Survival , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Regeneration , Reperfusion Injury/pathology , Retinal Diseases/pathology , Transcriptome
20.
Proc Natl Acad Sci U S A ; 109(44): 18054-9, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23071332

ABSTRACT

Gaucher disease (GD) is an autosomal recessive disorder caused by mutations in the acid ß-glucocerebrosidase gene. To model GD, we generated human induced pluripotent stem cells (hiPSC), by reprogramming skin fibroblasts from patients with type 1 (N370S/N370S), type 2 (L444P/RecNciI), and type 3 (L444P/L444P) GD. Pluripotency was demonstrated by the ability of GD hiPSC to differentiate to all three germ layers and to form teratomas in vivo. GD hiPSC differentiated efficiently to the cell types most affected in GD, i.e., macrophages and neuronal cells. GD hiPSC-macrophages expressed macrophage-specific markers, were phagocytic, and were capable of releasing inflammatory mediators in response to LPS. Moreover, GD hiPSC-macrophages recapitulated the phenotypic hallmarks of the disease. They exhibited low glucocerebrosidase (GC) enzymatic activity and accumulated sphingolipids, and their lysosomal functions were severely compromised. GD hiPSC-macrophages had a defect in their ability to clear phagocytosed RBC, a phenotype of tissue-infiltrating GD macrophages. The kinetics of RBC clearance by types 1, 2, and 3 GD hiPSC-macrophages correlated with the severity of the mutations. Incubation with recombinant GC completely reversed the delay in RBC clearance from all three types of GD hiPSC-macrophages, indicating that their functional defects were indeed caused by GC deficiency. However, treatment of induced macrophages with the chaperone isofagomine restored phagocytosed RBC clearance only partially, regardless of genotype. These findings are consistent with the known clinical efficacies of recombinant GC and isofagomine. We conclude that cell types derived from GD hiPSC can effectively recapitulate pathologic hallmarks of the disease.


Subject(s)
Gaucher Disease/pathology , Pluripotent Stem Cells/cytology , Cell Differentiation , Cell Lineage , Humans , Macrophage Activation , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...