Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE Trans Med Imaging ; PP2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865222

ABSTRACT

Neuro-oncological surgery is the primary brain cancer treatment, yet it faces challenges with gliomas due to their invasiveness and the need to preserve neurological function. Hence, radical resection is often unfeasible, highlighting the importance of precise tumor margin delineation to prevent neurological deficits and improve prognosis. Imaging Mueller polarimetry, an effective modality in various organ tissues, seems a promising approach for tumor delineation in neurosurgery. To further assess its use, we characterized the polarimetric properties by analysing 45 polarimetric measurements of 27 fresh brain tumor samples, including different tumor types with a strong focus on gliomas. Our study integrates a wide-field imaging Mueller polarimetric system and a novel neuropathology protocol, correlating polarimetric and histological data for accurate tissue identification. An image processing pipeline facilitated the alignment and overlay of polarimetric images and histological masks. Variations in depolarization values were observed for grey and white matter of brain tumor tissue, while differences in linear retardance were seen only within white matter of brain tumor tissue. Notably, we identified pronounced optical axis azimuth randomization within tumor regions. This study lays the foundation for machine learning-based brain tumor segmentation algorithms using polarimetric data, facilitating intraoperative diagnosis and decision making.

2.
Int J Comput Assist Radiol Surg ; 19(6): 1033-1043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503943

ABSTRACT

PURPOSE: Wide-field imaging Mueller polarimetry is a revolutionary, label-free, and non-invasive modality for computer-aided intervention; in neurosurgery, it aims to provide visual feedback of white matter fibre bundle orientation from derived parameters. Conventionally, robust polarimetric parameters are estimated after averaging multiple measurements of intensity for each pair of probing and detected polarised light. Long multi-shot averaging, however, is not compatible with real-time in vivo imaging, and the current performance of polarimetric data processing hinders the translation to clinical practice. METHODS: A learning-based denoising framework is tailored for fast, single-shot, noisy acquisitions of polarimetric intensities. Also, performance-optimised image processing tools are devised for the derivation of clinically relevant parameters. The combination recovers accurate polarimetric parameters from fast acquisitions with near-real-time performance, under the assumption of pseudo-Gaussian polarimetric acquisition noise. RESULTS: The denoising framework is trained, validated, and tested on experimental data comprising tumour-free and diseased human brain samples in different conditions. Accuracy and image quality indices showed significant ( p < 0.05 ) improvements on testing data for a fast single-pass denoising versus the state-of-the-art and high polarimetric image quality standards. The computational time is reported for the end-to-end processing. CONCLUSION: The end-to-end image processing achieved real-time performance for a localised field of view ( ≈ 6.5 mm 2 ). The denoised polarimetric intensities produced visibly clear directional patterns of neuronal fibre tracts in line with reference polarimetric image quality standards; directional disruption was kept in case of neoplastic lesions. The presented advances pave the way towards feasible oncological neurosurgical translations of novel, label-free, interventional feedback.


Subject(s)
Image Processing, Computer-Assisted , Neurosurgical Procedures , Humans , Neurosurgical Procedures/methods , Image Processing, Computer-Assisted/methods , Brain Neoplasms/surgery , Brain Neoplasms/diagnostic imaging , Surgery, Computer-Assisted/methods , White Matter/diagnostic imaging , White Matter/surgery
3.
J Biomed Opt ; 28(10): 102908, 2023 10.
Article in English | MEDLINE | ID: mdl-37705930

ABSTRACT

Significance: Imaging Mueller polarimetry is capable to trace in-plane orientation of brain fiber tracts by detecting the optical anisotropy of white matter of healthy brain. Brain tumor cells grow chaotically and destroy this anisotropy. Hence, the drop in scalar retardance values and randomization of the azimuth of the optical axis could serve as the optical marker for brain tumor zone delineation. Aim: The presence of underlying crossing fibers can also affect the values of scalar retardance and the azimuth of the optical axis. We studied and analyzed the impact of fiber crossing on the polarimetric images of thin histological sections of brain corpus callosum. Approach: We used the transmission Mueller microscope for imaging of two-layered stacks of thin sections of corpus callosum tissue to mimic the overlapping brain fiber tracts with different fiber orientations. The decomposition of the measured Mueller matrices was performed with differential and Lu-Chipman algorithms and completed by the statistical analysis of the maps of scalar retardance, azimuth of the optical axis, and depolarization. Results: Our results indicate the sensitivity of Mueller polarimetry to different spatial arrangement of brain fiber tracts as seen in the maps of scalar retardance and azimuth of optical axis of two-layered stacks of corpus callosum sections The depolarization varies slightly (<15%) with the orientation of the optical axes in both corpus callosum stripes, but its value increases by 2.5 to 3 times with the stack thickness. Conclusions: The crossing brain fiber tracts measured in transmission induce the drop in values of scalar retardance and randomization of the azimuth of the optical axis at optical path length of 15 µm. It suggests that the presence of nerve fibers crossing within the depth of few microns will be also detected in polarimetric maps of brain white matter measured in reflection configuration.


Subject(s)
Brain Neoplasms , Corpus Callosum , Humans , Corpus Callosum/diagnostic imaging , Brain/diagnostic imaging , Spectrum Analysis , Brain Neoplasms/diagnostic imaging , Algorithms
4.
Biomed Opt Express ; 14(5): 2400-2415, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37206128

ABSTRACT

During neurooncological surgery, the visual differentiation of healthy and diseased tissue is often challenging. Wide-field imaging Muller polarimetry (IMP) is a promising technique for tissue discrimination and in-plane brain fiber tracking in an interventional setup. However, the intraoperative implementation of IMP requires realizing imaging in the presence of remanent blood, and complex surface topography resulting from the use of an ultrasonic cavitation device. We report on the impact of both factors on the quality of polarimetric images of the surgical resection cavities reproduced in fresh animal cadaveric brains. The robustness of IMP is observed under adverse experimental conditions, suggesting a feasible translation of IMP for in vivo neurosurgical applications.

5.
Neurophotonics ; 10(2): 025009, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37234458

ABSTRACT

Significance: Imaging Mueller polarimetry (IMP) appears as a promising technique for real-time delineation of healthy and neoplastic tissue during neurosurgery. The training of machine learning algorithms used for the image post-processing requires large data sets typically derived from the measurements of formalin-fixed brain sections. However, the success of the transfer of such algorithms from fixed to fresh brain tissue depends on the degree of alterations of polarimetric properties induced by formalin fixation (FF). Aim: Comprehensive studies were performed on the FF induced changes in fresh pig brain tissue polarimetric properties. Approach: Polarimetric properties of pig brain were assessed in 30 coronal thick sections before and after FF using a wide-field IMP system. The width of the uncertainty region between gray and white matter was also estimated. Results: The depolarization increased by 5% in gray matter and remained constant in white matter following FF, whereas the linear retardance decreased by 27% in gray matter and by 28% in white matter after FF. The visual contrast between gray and white matter and fiber tracking remained preserved after FF. Tissue shrinkage induced by FF did not have a significant effect on the uncertainty region width. Conclusions: Similar polarimetric properties were observed in both fresh and fixed brain tissues, indicating a high potential for transfer learning.

SELECTION OF CITATIONS
SEARCH DETAIL