Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 9: 608826, 2021.
Article in English | MEDLINE | ID: mdl-33869148

ABSTRACT

There is an emerging environmental awareness and social concern regarding the environmental impact of the textile industry, highlighting the growing need for developing green and sustainable approaches throughout this industry's supply chain. Upstream, due to population growth and the rise in consumption of textile fibers, new sustainable raw materials and processes must be found. Cellulose presents unique structural features, being the most important and available renewable resource for textiles. The physical and chemical modification reactions yielding fibers are of high commercial importance today. Recently developed technologies allow the production of filaments with the strongest tensile performance without dissolution or any other harmful and complex chemical processes. Fibers without solvents are thus on the verge of commercialization. In this review, the technologies for the production of cellulose-based textiles, their surface modification and the recent trends on sustainable cellulose sources, such as bacterial nanocellulose, are discussed. The life cycle assessment of several cellulose fiber production methods is also discussed.

2.
Biodegradation ; 31(1-2): 47-56, 2020 04.
Article in English | MEDLINE | ID: mdl-32193751

ABSTRACT

Two culture media were tested for the production of bacterial nanocellulose (BNC) under static culture fermentation, one containing molasses (Mol-HS), the other molasses and corn steep liquor (Mol-CSL), as a source of carbon and nitrogen, respectively. These are low-cost nutrients widely available, which provide very good BNC productivities. However, the use of these substrates generates wastewaters with high organic loads. Anaerobic digestion is one of the most promising treatments for industrial wastewaters with high organic loads since, beyond removal of the organic matter, it generates energy, in form of biogas. The wastewaters from BNC fermentation were thus evaluated for their biochemical methane potential through anaerobic digestion. For this, two wastewaters streams were collected: (i) the culture medium obtained after fermentation (WaF) and (ii) the WaF combined with BNC washing wastewaters (WaW). These two effluents-WaF and WaW-were characterized regarding their chemical oxygen demand, total nitrogen, total and volatile solids, to assess their suitability for anaerobic digestion. The biochemical methane potential of WaF and WaW from Mol-CSL wastewaters was (387 ± 14 L kg-1 VS) and (354 ± 4 L kg-1 VS), corresponding to a methanization percentage of (86.9 ± 3.1) % and (79.5 ± 0.9) %, respectively. After treatment, the chemical oxygen demand of WaF and WaW was reduced by (89.2 ± 0.4) and (88.7 ± 1.5), respectively. An exploratory test using an Upflow Anaerobic Sludge Blanket reactor for WaW treatment was also performed. The reactor was operated with a organic loading rate of [(6.5 ± 0.1) g L-1 d-1] and hydraulic retention time of 3.33 days, allowing a chemical oxygen demand removal of 58% of WaW. Results here obtained demonstrate, for the first time, the high potential of AD for the valorisation of the BNC fermentation wastewaters.


Subject(s)
Sewage , Wastewater , Anaerobiosis , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Bioreactors , Methane , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...