Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 893: 147895, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37832807

ABSTRACT

Many gene families are shared across the tree of life between distantly related species because of horizontal gene transfers (HGTs). However, the frequency of HGTs varies strongly between gene families and biotic realms suggesting differential selection pressures and functional bias. One gene family with a wide distribution are FIC-domain containing enzymes (FicDs). FicDs catalyze AMPylation, a post-translational protein modification consisting in the addition of adenosine monophosphate to accessible residues of target proteins. Beside the well-known conservation of FicDs in deuterostomes, we report the presence of a conserved FicD gene ortholog in a large number of protostomes and microbial eukaryotes. We also reported additional FicD gene copies in the genomes of some rotifers, parasitic worms and bivalves. A few dsDNA viruses of these invertebrates, including White spot syndrome virus, Cherax quadricarinatus iridovirus, Ostreid herpesvirus-1 and the beetle nudivirus, carry copies of FicDs, with phylogenetic analysis suggesting a common origin of these FicD copies and the duplicated FicDs of their invertebrate hosts. HGTs and gene duplications possibly mediated by endogenous viruses or genetic mobile elements seem to have contributed to the transfer of AMPylation ability from bacteria and eukaryotes to pathogenic viruses, where this pathway could have been hijacked to promote viral infection.


Subject(s)
Invertebrates , Virus Diseases , Animals , Phylogeny , Invertebrates/genetics , Protein Processing, Post-Translational , Bacteria
2.
Protein Sci ; 33(2): e4887, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38152025

ABSTRACT

The pharmacokinetic properties of small biotherapeutics can be enhanced via conjugation to cross-reactive albumin-binding ligands in a process that improves their safety and accelerates testing through multiple pre-clinical animal models. In this context, the small and stable heavy-chain-only nanobody NbAlb1, capable of binding both human and murine albumin, has recently been successfully applied to improve the stability and prolong the in vivo plasma residence time of multiple small therapeutic candidates. Despite its clinical efficacy, the mechanism of cross-reactivity of NbAlb1 between human and murine serum albumins has not yet been investigated. To unveil the molecular basis of such an interaction, we solved the crystal structure of human serum albumin (hSA) in complex with NbAlb1. The structure was obtained by harnessing the unique features of a megabody chimeric protein, comprising NbAlb1 grafted onto a modified version of the circularly permutated and bacterial-derived protein HopQ. This structure showed that NbAlb1 contacts a yet unexplored binding site located in the peripheral region of domain II that is conserved in both human and mouse serum albumin proteins. Furthermore, we show that the binding of NbAlb1 to both serum albumin proteins is retained even at acidic pH levels, thus explaining its extended in vivo half-life. The elucidation of the molecular basis of NbAlb1 cross-reactivity to human and murine albumins might guide the design of novel nanobodies with broader reactivity toward a larger panel of serum albumins, thus facilitating the pre-clinical and clinical phases in humans.


Subject(s)
Serum Albumin, Human , Serum Albumin , Humans , Mice , Animals , Serum Albumin, Human/metabolism , Protein Binding , Serum Albumin/chemistry , Serum Albumin/metabolism , Binding Sites , Protein Domains
3.
Chem Res Toxicol ; 35(11): 2049-2058, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36148994

ABSTRACT

The current trend dealing with the production of per- and polyfluoroalkyl substances (PFASs) involves the shifting toward branched short-chain fluorinated compounds known as new-generation PFASs. A key aspect to be clarified, to address the adverse health effects associated with the exposure to PFASs, is their binding mode to human serum albumin (hSA), the most abundant protein in plasma. In this study, we investigated the interaction between hSA and two representative branched short-chain PFASs, namely, HPFO-DA and C6O4. In-solution studies revealed that both compounds bind hSA with affinities and stoichiometries lower than that of the legacy long-chain perfluoroalkyl compound PFOA. Competition experiments using hSA-binding drugs with known site-selectivity revealed that both HPFO-DA and C6O4 bound to pockets located in subdomain IIIA. The crystal structure of hSA in complex with HPFO-DA unveiled the presence of two binding sites. The characterization and direct comparison of hSA interactions with new-generation PFASs may be key elements for the understanding of the toxicological impact of these compounds.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Humans , Serum Albumin, Human , Binding Sites
4.
Ital J Pediatr ; 48(1): 65, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35509048

ABSTRACT

BACKGROUND: Cardio-facio-cutaneous syndrome (CFCS) belongs to RASopathies, a group of conditions caused by mutations in genes encoding proteins of the rat sarcoma/mitogen-activated protein kinase (RAS/MAPK) pathway. It is a rare syndrome, with about 300 patients reported. Main clinical manifestations include facial dysmorphisms, growth failure, heart defects, developmental delay, and ectodermal abnormalities. Mutations (mainly missense) of four genes (BRAF, MAP 2 K1, MAP 2 K2, and KRAS) have been associated to CFCS. However, whole gene deletions/duplications and chromosomal microdeletions have been also reported. Specifically, 19p13.3 deletion including MAP 2 K2 gene are responsible for cardio-facio-cutaneous microdeletion syndrome, whose affected subjects show more severe phenotype than CFCS general population. CASE PRESENTATION: Hereby, we report on a female newborn with prenatal diagnosis of omphalocele, leading to further genetic investigations through amniocentesis. Among these, array comparative genomic hybridization (a-CGH) identified a 19p13.3 microdeletion, spanning 1.27 Mb and including MAP 2 K2 gene. Clinical features at birth (coarse face with dysmorphic features, sparse and friable hair, cutaneous vascular malformations and hyperkeratotic lesions, interventricular septal defect, and omphalocele) were compatible with CFCS diagnosis, and further postnatal genetic investigations were not considered necessary. Soon after discharge, at around 1 month of life, she was readmitted to our Neonatal Intensive Care Unit due to repeated episodes of vomiting, subtending a hypertrophic pyloric stenosis (HPS) which was promptly identified and treated. CONCLUSIONS: Our report supports the 19p13.3 microdeletion as a contiguous gene syndrome, in which the involvement of the genes contiguous to MAP 2 K2 may modify the patients' phenotype. It highlights how CFCS affected subjects, including those with 19p13.3 deletions, may have associated gastrointestinal defects (e.g., omphalocele and HPS), providing further data on 19p13.3 microdeletion syndrome, and a better characterization of its genomic and phenotypic features. The complex clinical picture of such patients may be worsened by additional, and even precocious, life-threatening conditions like HPS. Clinicians must consider, anticipate and/or promptly treat possible medical and surgical complications, with the aim of reducing adverse outcomes. Extensive diagnostic work-up, and early, continuous, and multidisciplinary follow-up, as well as integrated care, are necessary for the longitudinal clinical evolution of any single patient.


Subject(s)
Ectodermal Dysplasia , Heart Defects, Congenital , Hernia, Umbilical , Comparative Genomic Hybridization , Ectodermal Dysplasia/diagnosis , Ectodermal Dysplasia/genetics , Facies , Failure to Thrive/diagnosis , Failure to Thrive/genetics , Female , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Humans , Pregnancy , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...