Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 20(15): 1931-1940, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31231943

ABSTRACT

The odd-even effect in luminescent [Eu2 (L)3 (H2 O)x ]⋅y(H2 O) complexes with aliphatic dicarboxylate ligands (L: OXA, MAL, SUC, GLU, ADP, PIM, SUB, AZL, SEB, UND, and DOD, where x=2-6 and y=0-4), prepared by the precipitation method, was observed for the first time in lanthanide compounds. The final dehydration temperatures of the Eu3+ complexes show a zigzag pattern as a function of the carbon chain length of the dicarboxylate ligands, leading to the so-called odd-even effect. The FTIR data confirm the ligand-metal coordination via the mixed mode of bridge-chelate coordination, except for the Eu3+ -oxalate complex. XRD results indicate that the highly crystalline materials belong to the monoclinic system. The odd-even effect on the 4 f-4 f luminescence intensity parameters (Ω2 and Ω4 ) is explained by using an extension of the dynamic coupling mechanism, herein named the ghost-atom model. In this method, the long-range polarizabilities ( α* ) were simulated by a ghost atom located at the middle of each ligand chain. The values of α* were estimated using the localized molecular orbital approach. The emission intrinsic quantum yield ( QLnLn ) of the Eu3+ complexes also presented an the odd-even effect, successfully explained in terms of the zigzag behavior shown by the Ω2 and Ω4 intensity parameters. Luminescence quenching due to water molecules in the first coordination sphere is also discussed and rationalized.

2.
Nanoscale ; 8(9): 5327-33, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26883124

ABSTRACT

Temperature measurements ranging from a few degrees to a few hundreds of Kelvin are of great interest in the fields of nanomedicine and nanotechnology. Here, we report a new ratiometric luminescent thermometer using thermally excited state absorption of the Eu(3+) ion. The thermometer is based on the simple Eu(3+) energy level structure and can operate between 180 and 323 K with a relative sensitivity ranging from 0.7 to 1.7% K(-1). The thermometric parameter is defined as the ratio between the emission intensities of the (5)D0 → (7)F4 transition when the (5)D0 emitting level is excited through the (7)F2 (physiological range) or (7)F1 (down to 180 K) level. Nano and microcrystals of Y2O3:Eu(3+) were chosen as a proof of concept of the operational principles in which both excitation and detection are within the first biological transparent window. A novel and of paramount importance aspect is that the calibration factor can be calculated from the Eu(3+) emission spectrum avoiding the need for new calibration procedures whenever the thermometer operates in different media.

3.
Inorg Chem ; 53(24): 12902-10, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25475194

ABSTRACT

The design of bifunctional magnetic luminescent nanomaterials containing Fe3O4 functionalized with rare earth ion complexes of calixarene and ß-diketonate ligands is reported. Their preparation is accessible through a facile one-pot method. These novel Fe3O4@calix-Eu(TTA) (TTA = thenoyltrifluoroacetonate) and Fe3O4@calix-Tb(ACAC) (ACAC = acetylacetonate) magnetic luminescent nanomaterials show interesting superparamagnetic and photonic properties. The magnetic properties (M-H and ZFC/FC measurements) at temperatures of 5 and 300 K were explored to investigate the extent of coating and the crystallinity effect on the saturation magnetization values and blocking temperatures. Even though magnetite is a strong luminescence quencher, the coating of the Fe3O4 nanoparticles with synthetically functionalized rare earth complexes has overcome this difficulty. The intramolecular energy transfer from the T1 excited triplet states of TTA and ACAC ligands to the emitting levels of Eu(3+) and Tb(3+) in the nanomaterials and emission efficiencies are presented and discussed, as well as the structural conclusions from the values of the 4f-4f intensity parameters in the case of the Eu(3+) ion. These novel nanomaterials may act as the emitting layer for the red and green light for magnetic light-converting molecular devices (MLCMDs).

4.
Rapid Commun Mass Spectrom ; 22(3): 385-93, 2008.
Article in English | MEDLINE | ID: mdl-18181224

ABSTRACT

The formation of complexes involving p-tert-butylcalix[6]arene with neutral and charged species has been investigated by tandem mass spectrometry combined with electrospray ionization. Complexes of p-tert-butylcalix[6]arene with NH4+ ions were observed in the ratios 1:1, 2:1, and 3:1, together with the complexes of p-tert-butylcalix[6]arene with NH4OH and Na+ ions in the ratios 1:1:1, 2:1:1, and 3:1:1. A single 1:1 complex of p-tert-butylcalix[6]arene with Na+ ions was observed. In addition, a doubly charged complex of p-tert-butylcalix[6]arene with NH4OH, Na+, and NH4+ ions in the ratio 6:1:1:1 was observed. The identity of each complex was determined by mass analysis of product ions formed by the application of a declustering potential over the range 20-220 V and by observation of product ion mass spectra wherein the collision energy was varied from 5 to 50 eV. Fragmentation of the complexes is characterized by the facile loss of the ammonia molecule, sodium and ammonium ions, loss of neutral p-tert-butylcalix[6]arene, and successive neutral losses of C4H8 from the six tert-butyl groups in each p-tert-butylcalix[6]arene molecule.


Subject(s)
Calixarenes/analysis , Hydroxides/analysis , Phenylalanine/analogs & derivatives , Quaternary Ammonium Compounds/analysis , Sodium/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Ammonium Hydroxide , Complex Mixtures/analysis , Ions , Phenylalanine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...