Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 913: 169317, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38104833

ABSTRACT

Exposure to pesticides during pregnancy has been associated with several serious congenital malformations, such as neural tube defects, therefore, is a cause for concern in terms of human health. This review aims to gather information related to maternal exposure during pregnancy and the risk of triggering neural tube defects in the offspring. The search strategy for the studies followed the PRISMA guidelines. We conducted a systematic search in the Science Direct, PubMed, Cochrane Library, Embase, Scopus, and Web of Science databases for all epidemiological studies that sought to associate exposure to pesticides during embryonic development with the risk of neural tube defects (NTDs). The keywords used were "pesticide", "herbicide", "congenital" and "neural". Of the 229 articles, 8 eligible ones (7 case-control and 1 cross-sectional) evaluated pesticide exposure in pregnancy. Different methods were used, including analysis of biological samples and questionnaires. The pesticides studied included insecticides, herbicides, fungicides, and nematicides. Insecticides were the most studied, with variations in concentrations between tissues and studies. Distinct levels of pesticides have been detected in maternal serum, placenta, and umbilical cord. Models were statistically adjusted for confounding factors, such as smoking and dietary supplement intakes. Concentrations were measured in different exposure windows (periconception and prenatal), related to NTDs such as anencephaly and spina bifida. Different data collection techniques, types of biological samples, and exposure windows were used, which made comparison difficult. The main pesticides studied included DDT, DDE, HCH, and endosulfan. Maternal serum showed the highest concentrations of pesticides, but detection in placental tissue and umbilical cord confirms embryonic exposure. Confounding variables were adjusted for in the analysis of the articles, but they may still contribute to the risk of NTDs. All the studies analyzed pesticide exposure and the relationship with NTDs. However, a more standardized survey would be ideal for better comparisons.


Subject(s)
Herbicides , Insecticides , Neural Tube Defects , Pesticides , Female , Humans , Pregnancy , Pesticides/toxicity , Pesticides/analysis , Cross-Sectional Studies , Placenta/chemistry , Neural Tube Defects/chemically induced , Neural Tube Defects/epidemiology , Risk Factors
2.
Environ Pollut ; 334: 122187, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37442326

ABSTRACT

Dicamba has been used worldwide for 60 years, but few studies have been conducted on its environmental safety and health effects. Therefore, this study aims to evaluate the acute toxicity, teratogenic effects, oxidative stress, and neurotoxicity of Dicamba in zebrafish embryos. Embryos were exposed to concentrations of 4.5, 18, 72, and 288 mg/L of Dicamba for 96 h. Among the teratogenic effects, yolk sac edema predominated, besides malabsorption of nutrients (grayish yolk sac). The presence of edema may indicate problems with circulation and water efflux from the embryos, which may be related to kidney and cardiovascular problems. Other effects such as hemorrhage, spinal and eye malformations, and dwarfism were also observed. The hatching rate was reduced in the highest concentration, and in the other concentrations, a decrease was noticeable indicating a delay in development. Neurotoxic effects were also observed. Oxidative stress analysis showed a significant decrease in SOD at all concentrations and an increase in GPx, GSH, and LPO at 288 mg/L of Dicamba. It was observed that the herbicide is capable of causing teratogenic effects, developmental delay, and oxidative stress. These results show that exposure to Dicamba, in a commercial formulation, can bring risks during embryonic development. In addition, it highlights the need for further studies on the effects of the herbicide and a reassessment of toxicity categorization.


Subject(s)
Herbicides , Water Pollutants, Chemical , Animals , Zebrafish , Herbicides/metabolism , Dicamba , Embryo, Nonmammalian , Water Pollutants, Chemical/metabolism , Oxidative Stress
3.
Sci Total Environ ; 849: 157715, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35914599

ABSTRACT

BACKGROUND: Telomere length is a common biomarker for the cumulative effect of environmental factors on aging-related diseases, therefore an association has been hypothesized between occupational exposure to pesticides and shorter telomere length. OBJECTIVE: This study is a systematic review and meta-analysis aiming to examine the association between telomere length and occupational exposure to pesticides. METHODS: We systematically searched in SciELO, PubMed, Scopus, Embase, Cochrane, Lilacs, Science Direct, and Web of Science databases for all observational studies containing measurements of telomere length on groups occupationally exposed to pesticides. Data were synthesized through qualitative synthesis and meta-analysis. We estimated the associations between exposed and non-exposed groups by using the natural log of the response ratio (lnRR). Heterogeneity was quantified using the Cochran Q test and I2 statistics. RESULTS: Six studies were included in the qualitative synthesis and meta-analysis, with a total of 480 participants exposed to pesticides. The time of exposure evaluated 391 participants that had a range of 5 to >30 years of occupational exposure. Most studies presented shorter telomere length in the occupationally exposed group. From the six studies included in the meta-analysis, three presented telomere length measurement as a single copy gene (T/S), and three presented telomere length measurement as base pairs (bp). The statistical analysis pooled estimates (log ratio of means) of the telomere length in both measurements (T/S and bp) showed a shortening of telomere length in the exposed group when compared with the non-exposed (control) group. Two of six studies reported longer telomere length in the group exposed to pesticides. DISCUSSION: Our findings suggest an association between occupational exposure to pesticides and shorter telomere length. However, we found a small number of studies to include in our meta-analysis, being required more high-quality studies to strengthen our findings and conclusions.


Subject(s)
Occupational Exposure , Pesticides , Biomarkers , Humans , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Pesticides/toxicity , Telomere
4.
Environ Sci Pollut Res Int ; 29(29): 43435-43447, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35386084

ABSTRACT

As well as a lead-related environmental factor, genetic factors could also corroborate important changes in intelligence quotient (IQ) through single-nucleotide polymorphisms. Thus, a systematic review was carried out to evaluate the possible influence of polymorphism on blood Pb levels and IQ points in pediatric patients (0-19 years old). Following the PRISMA guideline, the studies were systematically collected on PubMed, Scopus, and Embase databases. Six genes (transferrin (TF); glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A); glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B); dopamine receptor D2/ankyrin repeat and kinase domain containing 1 ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1); aminolevulinate dehydratase (ALAD); vitamin D receptor (VDR)) were found in six selected articles. In these genes, 11 single-nucleotide polymorphisms were searched and six different types of variations (missense variant, intron variant, synonymous variant, stop, stop gained) were observed. Due to the few studies in the literature, there is no conclusive data to point out that there is a direct relationship between polymorphisms, Pb levels, and reduction of IQ points.


Subject(s)
Lead , N-Methylaspartate , Adolescent , Adult , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Young Adult , Genotype , Glutamates/genetics , N-Methylaspartate/genetics , Nucleotides , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases
5.
Front Physiol ; 12: 699220, 2021.
Article in English | MEDLINE | ID: mdl-34366888

ABSTRACT

Nutrigenomics is the study of the gene-nutrient interaction and it indicates that some nutrients, called bioactive compounds, can mold the genetic expression or change the nucleotide chain. Polyphenols are secondary metabolites found in plants that are regularly consumed in functional foods and help prevent or delay the onset of type 2 diabetes mellitus (T2DM) and its complications. This article objected to review studies about the interaction of diet with polyphenols and Mediterranean diet in the expression of human genes related to T2DM. Resveratrol acts as an antioxidant, anti-inflammatory, and increases mitochondrial function. Regular consumption of quercetin resulted in improvement of hypertension and suppression of diabetes-induced vasoconstriction. Genistein also showed positive results in T2DM, such as increased cell mass and improved glucose tolerance and insulin levels. Catechins showed efficiency in inducing genes in triacylglycerol biosynthesis, inhibition of fatty acids and cholesterol, and resulting in their participation in mitigating complications of diabetes. Lastly, curcumin was demonstrated to be a protector of the pancreatic islets against streptozotocin-induced oxidative stress. Growing evidence suggest that bioactive compounds such as polyphenols have an important role in T2DM and the prevention and treatment of its complication, as they cause activation or inhibition of related genes.

6.
Genet Mol Biol ; 42(2): 425-435, 2019.
Article in English | MEDLINE | ID: mdl-31259365

ABSTRACT

Titanium dioxide nanoparticles (TiO2NPs) are widely used and may impact the environment. Thus, this study used a high concentration of TiO2NP (1000 mg/L) to verify the defense mechanisms triggered by a plant system - an indicator of toxicity. Furthermore, this study aimed at completely characterizing TiO2NP suspensions to elucidate their toxic behavior. TiO2NPs were taken up by meristematic cells of Allium cepa, leading to slight inhibition of seed germination and root growth. However, severe cellular and DNA damages were observed in a concentration-dependent manner (10, 100, and 1000 mg/L). For this reason, we used the highest tested concentration (1000 mg/L) to verify if the plant cells developed defense mechanisms against the TiO2NPs and evaluated other evidences of TiO2NP genotoxicity. Nucleolar alterations and plant defense responses (i.e., increased lytic vacuoles, oil bodies and NP phase change) were observed in meristematic cells exposed to TiO2NP at 1000 mg/L. In summary, TiO2NPs can damage the genetic material of plants; however, plants displayed defense mechanisms against the deleterious effects of these NPs. In addition, A. cepa was found to be a suitable test system to evaluate the cyto- and genotoxicity of NPs.

7.
Pestic Biochem Physiol ; 150: 83-88, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30195392

ABSTRACT

Mesotrione (MES) is an herbicide from the triketone family and has been used as an alternative to Atrazine (ATZ), which was banned in some countries due to its toxicity to non-target organisms. Despite being considered an eco-friendly herbicide, data from the literature about the harmful effects of MES in its pure form and/or in combination with other herbicides is still scarce. Aimed at assessing the potential of MES to induce cell death and DNA damage, seeds of Allium cepa (higher plant, monocotyledon) were exposed to this herbicide, pure and in mixture with ATZ, and the number of dividing cells (cytotoxicity), chromosomal aberrations (CA, genotoxicity) and micronuclei (MN, mutagenicity) were then quantified. The pure MES (1.8 to 460 µg/L) did not show either cytotoxicity or genotoxicity/mutagenicity under the tested conditions. The genotoxicity of ATZ (1.5 to 400 µg/L), previous reported in the literature, was confirmed herein. The assessment of MES + ATZ mixtures (1.8 + 1.5; 7 + 6.25; 30 + 25 µg/L, respectively) showed that MES, at low concentrations, enhance the genotoxicity of ATZ (potentiation), since the significant frequencies of CA and MN were greater than the ones expected in additive effects. Taking together, MES in its pure form seems to be a safe alternative to ATZ regarding the capacity to damage (at cellular and DNA levels) non-target plants (Monocots); however, MES in combination with ATZ appeared to act as a co-mutagen at low concentrations.


Subject(s)
Allium/drug effects , Atrazine/toxicity , Cyclohexanones/toxicity , Herbicides/toxicity , Mutagens/toxicity , Allium/genetics , DNA Damage , Genes, Plant , Mutagenicity Tests
8.
Bull Environ Contam Toxicol ; 97(1): 63-70, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27189358

ABSTRACT

The sublethal effects of water-soluble fraction of gasoline (WSFG, 1.5 % v/v) were evaluated in the freshwater fish, Astynax altiparanae, after acute exposure (96 h) under a semi-static system. In addition, the recovery process was assessed in the fish following contaminant depuration. Recovery treatments were carried out with gradual depuration (GD), consisting of 7 days in the WSFG, followed by 8 days in clean water; and treatments with total depuration in clean water for 15 (DEP 15) and 30 days (DEP 30). The effects were evaluated through the piscine micronucleus test and by differential counting of organic defense cells. Acute exposure increased the frequency of neutrophils. In the GD treatment, the thrombocyte count and erythrocytic nuclear abnormalities (ENA) increased. In the DEP 15 treatment, there was a reduction of ENA; and following 30 days of depuration (i.e., DEP 30), the number of lymphocytes increased and the thrombocyte count remained high. These results indicate a long-term response to a condition of stress from WSFG.


Subject(s)
Characidae/metabolism , Gasoline/toxicity , Water Pollutants, Chemical/toxicity , Animals , Fresh Water , Micronucleus Tests , Water/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...