Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Sci Rep ; 13(1): 18685, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907720

ABSTRACT

The Developmental Origins of Health and Disease (DOHaD) concept has provided the framework to assess how early life experiences can shape health and disease throughout the life course. While maternal malnutrition has been proposed as a risk factor for the developmental programming of prostate cancer (PCa), the molecular mechanisms remain poorly understood. Using RNA-seq data, we demonstrated deregulation of miR-206-Plasminogen (PLG) network in the ventral prostate (VP) of young maternally malnourished offspring. RT-qPCR confirmed the deregulation of the miR-206-PLG network in the VP of young and old offspring rats. Considering the key role of estrogenic signaling pathways in prostate carcinogenesis, in vitro miRNA mimic studies also revealed a negative correlation between miR-206 and estrogen receptor α (ESR1) expression in PNT2 cells. Together, we demonstrate that early life estrogenization associated with the deregulation of miR-206 networks can contribute to the developmental origins of PCa in maternally malnourished offspring. Understanding the molecular mechanisms by which early life malnutrition affects offspring health can encourage the adoption of a governmental policy for the prevention of non-communicable chronic diseases related to the DOHaD concept.


Subject(s)
Malnutrition , MicroRNAs , Prostatic Neoplasms , Animals , Male , Rats , Malnutrition/complications , Malnutrition/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Origin of Life , Prostate/metabolism , Prostatic Neoplasms/genetics
2.
Aging Cell ; 22(6): e13827, 2023 06.
Article in English | MEDLINE | ID: mdl-37060190

ABSTRACT

Obesity significantly decreases life expectancy and increases the incidence of age-related dysfunctions, including ß-cell dysregulation leading to inadequate insulin secretion. Here, we show that diluted plasma from obese human donors acutely impairs ß-cell integrity and insulin secretion relative to plasma from lean subjects. Similar results were observed with diluted sera from obese rats fed ad libitum, when compared to sera from lean, calorically restricted, animals. The damaging effects of obese circulating factors on ß-cells occurs in the absence of nutrient overload, and mechanistically involves mitochondrial dysfunction, limiting glucose-supported oxidative phosphorylation and ATP production. We demonstrate that increased levels of adiponectin, as found in lean plasma, are the protective characteristic preserving ß-cell function; indeed, sera from adiponectin knockout mice limits ß-cell metabolic fluxes relative to controls. Furthermore, oxidative phosphorylation and glucose-sensitive insulin secretion, which are completely abrogated in the absence of this hormone, are restored by the presence of adiponectin alone, surprisingly even in the absence of other serological components, for both the insulin-secreting INS1 cell line and primary islets. The addition of adiponectin to cells treated with plasma from obese donors completely restored ß-cell functional integrity, indicating the lack of this hormone was causative of the dysfunction. Overall, our results demonstrate that low circulating adiponectin is a key damaging element for ß-cells, and suggest strong therapeutic potential for the modulation of the adiponectin signaling pathway in the prevention of age-related ß-cell dysfunction.


Subject(s)
Insulin Resistance , Insulin-Secreting Cells , Mice , Humans , Rats , Animals , Adiponectin/metabolism , Insulin Secretion , Insulin/metabolism , Obesity/metabolism , Insulin-Secreting Cells/metabolism , Glucose/metabolism , Insulin Resistance/physiology
3.
Sci Rep ; 12(1): 7375, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35513450

ABSTRACT

Gestational diabetes mellitus (GDM) plus rectus abdominis muscle (RAM) myopathy predicts long-term urinary incontinence (UI). Atrophic and stiff RAM are characteristics of diabetes-induced myopathy (DiM) in pregnant rats. This study aimed to determine whether swimming exercise (SE) has a therapeutic effect in mild hyperglycemic pregnant rats model. We hypothesized that SE training might help to reverse RAM DiM. Mild hyperglycemic pregnant rats model was obtained by a unique subcutaneous injection of 100 mg/kg streptozotocin (diabetic group) or citrate buffer (non-diabetic group) on the first day of life in Wistar female newborns. At 90 days of life, the rats are mated and randomly allocated to remain sedentary or subjected to a SE protocol. The SE protocol started at gestational day 0 and consisted of 60 min/day for 6 days/week in a period of 20 days in a swim tunnel. On day 21, rats were sacrificed, and RAM was collected and studied by picrosirius red, immunohistochemistry, and transmission electron microscopy. The SE protocol increased the fiber area and diameter, and the slow-twitch and fast-twitch fiber area and diameter in the diabetic exercised group, a finding was also seen in control sedentary animals. There was a decreased type I collagen but not type III collagen area and showed a similar type I/type III ratio compared with the control sedentary group. In conclusion, SE during pregnancy reversed the RAM DiM in pregnant rats. These findings may be a potential protocol to consider in patients with RAM damage caused by GDM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes, Gestational , Muscular Diseases , Physical Conditioning, Animal , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/therapy , Female , Muscular Diseases/etiology , Muscular Diseases/therapy , Pregnancy , Rats , Rats, Wistar , Streptozocin/adverse effects , Swimming/physiology
4.
Prostate ; 81(13): 926-937, 2021 09.
Article in English | MEDLINE | ID: mdl-34254335

ABSTRACT

Advances in prostatic stroma studies over the past few decades have demonstrated that the stroma not only supports and nourishes the gland's secretory epithelium but also participates in key aspects of morphogenesis, in the prostate's hormonal metabolism, and in the functionality of the secretory epithelium. Furthermore, the stroma is implicated in the onset and progression of prostate cancer through the formation of the so-called reactive stroma, which corresponds to a tumorigenesis-permissive microenvironment. Prostatic stromal cells are interconnected and exchange paracrine signals among themselves in a gland that is highly sensitive to endocrine hormones. There is a growing body of evidence that telocytes, recently detected interstitial cells that are also present in the prostate, are involved in stromal organization, so that their processes form a network of interconnections with both the epithelium and the other stromal cells. The present review provides an update on the different types of prostate stromal cells, their interrelationships and implications for prostate development, physiology and pathological conditions.


Subject(s)
Prostate/pathology , Stromal Cells/pathology , Animals , Humans , Male , Paracrine Communication/physiology , Prostatic Neoplasms/pathology
5.
Cell Biol Int ; 44(12): 2512-2523, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32856745

ABSTRACT

The postlactational involution of the mammary gland is a complex process. It involves the collapse of the alveoli and the remodeling of the extracellular matrix, which in turn implies a complex set of interrelations between the epithelial, stromal, and extracellular matrix elements. The telocytes, a new type of CD34-positive stromal cell that differs from fibroblasts in morphological terms and gene expression, were detected in the stroma of several tissues, including the mammary gland; however, their function remains elusive. The present study employed three-dimensional reconstructions and immunohistochemical, ultrastructural, and immunofluorescence techniques in histological sections of the mammary gland of the Mongolian gerbil during lactation and postlactational involution to evaluate the presence of telocytes and to investigate a possible function for these cells. By means of immunofluorescence assays for CD34 and c-kit, major markers of telocytes, and also through morphological and ultrastructural evidences, telocytes were observed to surround the mammary ducts and collapsing alveoli. It was also found that these cells are associated with matrix metalloproteinase 9, which indicates that telocytes can play a role in extracellular matrix digestion, as well as vascular endothelial growth factor, a factor that promotes angiogenesis. Together, these data indicate that telocytes are a distinct cell type in the mammary gland and, for the first time, show that these cells possibly play a role in tissue remodeling and angiogenesis during the postlactional involution of the mammary gland.


Subject(s)
Lactation/metabolism , Mammary Glands, Animal/physiology , Telocytes/metabolism , Animals , Antigens, CD34/metabolism , Extracellular Matrix/metabolism , Female , Gene Expression/genetics , Gerbillinae/metabolism , Mammary Glands, Animal/metabolism , Neovascularization, Pathologic/metabolism , Stromal Cells/metabolism , Telocytes/physiology , Vascular Endothelial Growth Factor A/metabolism
6.
Diabetes Res Clin Pract ; 166: 108315, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32679058

ABSTRACT

AIMS: To evaluate the effects of gestational diabetes mellitus (GDM) on the structural characteristics of the rectus abdominis muscle (RAM) and its indirect effects on pregnancy-specific urinary incontinence (PSUI). METHODS: A total of 92 pregnant women were divided into four groups, according to their clinical conditions: non-GDM continent, non-GDM associated PSUI, GDM continent and GDM associated PSUI. The muscle morphometry (histochemistry and immunohistochemistry) for the fiber types and collagen fiber distribution, the ultrastructural analysis (transmission electron microscopy), the protein expression of fiber types and calcium signaling (Western blotting), and the content of types I and III collagen fiber (ELISA) in RAM collected at delivery were assessed. RESULTS: The GDM groups presented a significantly increased number of slow fibers and slow-twitch oxidative fiber expression; decreased fiber area, number of fast fibers, and area of collagen; an increase in central nuclei; ultrastructural alterations with focal lesion areas such as myeloid structures, sarcomere disorganization, and mitochondrial alteration. The PSUI groups presented a considerable decrease in types I and III collagen contents and the localization of collagen fiber. CONCLUSIONS: Our data reveal that GDM causes morphological, biochemical and physiological changes in the RAM, and this might predispose women to PSUI.


Subject(s)
Diabetes Complications/complications , Diabetes, Gestational/physiopathology , Rectus Abdominis/abnormalities , Urinary Incontinence/etiology , Adult , Cross-Sectional Studies , Female , Humans , Pregnancy
7.
Oxid Med Cell Longev ; 2020: 2148562, 2020.
Article in English | MEDLINE | ID: mdl-32411320

ABSTRACT

The incidence of prostate cancer (PCa) is increasing, and it is currently the second most frequent cause of death by cancer in men. Despite advancements in cancer therapies, new therapeutic approaches are still needed for treatment-refractory advanced metastatic PCa. Cross-species analysis presents a robust strategy for the discovery of new potential therapeutic targets. This strategy involves the integration of genomic data from genetically engineered mouse models (GEMMs) and human PCa datasets. Considering the role of antioxidant pathways in tumor initiation and progression, we searched oxidative stress-related genes for a potential therapeutic target for PCa. First, we analyzed RNA-sequencing data from Pb-Cre4; Ptenf/f mice and discovered an increase in sulfiredoxin (Srxn1) mRNA expression in high-grade prostatic intraepithelial neoplasia (PIN), well-differentiated adenocarcinoma (medium-stage tumors), and poor-differentiated adenocarcinoma (advanced-stage prostate tumors). The increase of SRXN1 protein expression was confirmed by immunohistochemistry in mouse prostate tumor paraffin samples. Analyses of human databases and prostate tissue microarrays demonstrated that SRXN1 is overexpressed in a subset of high-grade prostate tumors and correlates with aggressive PCa with worse prognosis and decreased survival. Analyses in vitro showed that SRXN1 expression is also higher in most PCa cell lines compared to normal cell lines. Furthermore, siRNA-mediated downregulation of SRXN1 led to decreased viability of PCa cells LNCaP. In conclusion, we identified the antioxidant enzyme SRXN1 as a potential therapeutic target for PCa. Our results suggest that the use of specific SRXN1 inhibitors may be an effective strategy for the adjuvant treatment of castration-resistant PCa with SRXN1 overexpression.


Subject(s)
Molecular Targeted Therapy , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Prostatic Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Survival , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Staging , Oxidative Stress/genetics , Oxidoreductases Acting on Sulfur Group Donors/genetics , Prognosis , Prostate/pathology , Prostatic Neoplasms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Survival Analysis
8.
J Cell Physiol ; 234(10): 19048-19058, 2019 08.
Article in English | MEDLINE | ID: mdl-30924162

ABSTRACT

Prostate development and function are regulated by androgens. Epithelial cell apoptosis in response to androgen deprivation is caspase-9-dependent and peaks at Day 3 after castration. However, isolated epithelial cells survive in the absence of androgens. Znf142 showed an on-off expression pattern in intraepithelial CD68-positive macrophages, with the on-phase at Day 3 after castration. Rats treated with gadolinium chloride to deplete macrophages showed a significant drop in apoptosis, suggesting a causal relationship between macrophages and epithelial cell apoptosis. Intraepithelial M1-polarization was also limited to Day 3, and the inducible nitric oxide synthase (iNOS) knockout mice showed significantly less apoptosis than wild-type controls. The epithelial cells showed focal DNA double-strand breaks (DSB), 8-oxoguanine, and protein tyrosine-nitrosylation, fingerprints of exposure to peroxinitrite. Cultured epithelial cells induced M1-polarization and showed focal DSB and underwent apoptosis. The same phenomena were reproduced in LNCaP cells cocultured with Raw 264.7 macrophages. In conclusion, the M1 142 -macrophage (named after Znf142) attack causes activation of the intrinsic apoptosis pathway in epithelial cells after castration.


Subject(s)
Apoptosis/physiology , Epithelial Cells/metabolism , Macrophages/physiology , Oxidative Stress/physiology , Prostate/pathology , Androgen Antagonists , Androgens/metabolism , Animals , Cell Line , Gadolinium/pharmacology , Male , Mice , Mice, Knockout , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/genetics , Prostate/cytology , Prostate/growth & development , Prostatic Neoplasms/pathology , RAW 264.7 Cells , Rats , Rats, Wistar , Trans-Activators/metabolism , Transcription Factors
9.
J Gerontol A Biol Sci Med Sci ; 74(6): 751-759, 2019 05 16.
Article in English | MEDLINE | ID: mdl-29762647

ABSTRACT

Carcinogenesis is frequently linked to genetic background, however, exposure to environmental risk factors has gained attention as the etiologic agent for several types of cancer, including prostate. The intrauterine microenvironment has been described as a preponderant factor for offspring health; and maternal exposure to insult has been linked to chronic disease in older offspring. Using a model of maternal exposure to low-protein diet (LPD; 6% protein), we demonstrated that impairment of offspring rat prostatic growth on postnatal day (PND) 21 was associated with prostate carcinogenesis in older offspring (PND 540). One explanation is that maternal LPD consumption exposed offspring to an estrogenic intrauterine microenvironment, which potentially sensitized prostate cells early during glandular morphogenesis, increasing cellular response to estrogen in older rats. The onset of accelerated prostatic growth, observed on PND 21, associated with an unbalanced estrogen/testosterone ratio and increased circulating IGF-1 in older offspring appears to contribute to the development of prostate carcinoma in groups on gestational low protein and gestational and lactational low protein diets (33 and 50%, respectively). Our study strongly indicated maternal exposure to LPD as a potential risk factor for induction of slow-growing prostate carcinogenesis in rat offspring later in life.


Subject(s)
Carcinogenesis , Diet, Protein-Restricted , Prostate/growth & development , Prostatic Neoplasms/pathology , Age Factors , Animals , Animals, Newborn , Biomarkers/metabolism , Female , Hormones/metabolism , Male , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Sprague-Dawley
10.
Exp Mol Pathol ; 105(1): 130-138, 2018 08.
Article in English | MEDLINE | ID: mdl-30003874

ABSTRACT

Telocytes are recently categorised CD34-positive interstitial cells that comprise the cells which were previously called interstitial Cajal-like cells (ICLCs). These were detected in the stroma of various organs such as the prostate, lungs, mammary glands, liver, gallbladder, and jejunum, among others. Several functions have been proposed for telocytes, such as a supportive role in smooth muscle contraction and immune function in adult organs, and tissue organisation and paracrine signalling during development, as well as others. In the jejunum, little is known about the function of telocytes in the adult organ, or is there any information about when these cells develop or if they could have an auxiliary role in the development of the jejunum. The present study employed histological, immunohistochemical and immunofluorescence techniques on histological sections of the jejunum of Mongolian gerbil pups on two different days of postnatal development of the jejunum, covering the maturation period of the organ. By immunolabelling for CD34, it was observed that telocytes are already present in the jejunum during the first week of postnatal life and exist in close association with the developing muscularis mucosae, which are therefore TGFß1-positive. The telocytes are still present at the end of the first month of life, and a portion of them present co-localisation with c-Kit. Fibroblast-like cells, which are exclusively c-Kit-positive, are also observed, which may indicate the presence of interstitial Cajal cells (ICCs). Finally, it can be hypothesised that a portion of the telocytes may give rise to ICCs, which are c-Kit-positive but CD34 negative.


Subject(s)
Jejunum/growth & development , Telocytes/cytology , Animals , Antigens, CD34/genetics , Antigens, CD34/metabolism , Cell Differentiation , Gerbillinae , Interstitial Cells of Cajal/cytology , Interstitial Cells of Cajal/metabolism , Jejunum/cytology , Telocytes/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
11.
Carbohydr Polym ; 196: 126-134, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29891279

ABSTRACT

This work reports the preparation, the characterization and the prednisolone release profile of biocompatible hydrogel nanocomposites containing mesoporous silica (SBA) and alginate as a biomaterial for enhanced drug delivery with reduced burst effect and improved mechanical properties. Such systems, which were prepared using specific SBA/alginate-crosslinking chemistry, exhibited interconnecting pore hybrid network owing to both mesoporous silica and hydrogel characteristics. Activated SBA was shown to be a determinant factor in inhibiting initial burst by nearly 90% and the drug was released with minimal burst kinetics. The nanoparticles reduced the movements of polymer chains, affecting macromolecular relaxation, and the distribution of mesoporous silica within the hydrogel made drug release into surrounding liquid less favorable. The proposed systems are biocompatible with human immortalized RWPE-1 prostatic epithelial cells. This report offers an approach of up-to-date interest for the development of advanced biomaterials for further physiological and pathological applications.


Subject(s)
Alginates/chemistry , Drug Carriers/chemistry , Nanocomposites/chemistry , Silicon Dioxide/chemistry , Cell Line , Cell Survival/drug effects , Drug Carriers/toxicity , Drug Liberation , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Hydrogels/chemistry , Mechanical Phenomena , Nanocomposites/toxicity , Porosity , Prednisolone/chemistry , Structure-Activity Relationship , Water/chemistry
12.
EMBO Mol Med ; 10(3)2018 03.
Article in English | MEDLINE | ID: mdl-29437778

ABSTRACT

Genetically engineered mouse models of cancer can be used to filter genome-wide expression datasets generated from human tumours and to identify gene expression alterations that are functionally important to cancer development and progression. In this study, we have generated RNAseq data from tumours arising in two established mouse models of prostate cancer, PB-Cre/PtenloxP/loxP and p53loxP/loxPRbloxP/loxP, and integrated this with published human prostate cancer expression data to pinpoint cancer-associated gene expression changes that are conserved between the two species. To identify potential therapeutic targets, we then filtered this information for genes that are either known or predicted to be druggable. Using this approach, we revealed a functional role for the kinase MELK as a driver and potential therapeutic target in prostate cancer. We found that MELK expression was required for cell survival, affected the expression of genes associated with prostate cancer progression and was associated with biochemical recurrence.


Subject(s)
Molecular Targeted Therapy , Prostatic Neoplasms/therapy , Animals , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Disease Progression , Down-Regulation/drug effects , Down-Regulation/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Genome , Humans , Male , Mice , Naphthyridines/pharmacology , Neoplasm Invasiveness , Phenotype , Phosphorylation/drug effects , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Species Specificity , Spindle Apparatus/drug effects , Spindle Apparatus/metabolism , Stathmin/metabolism , Transcriptome/genetics
13.
Reprod Fertil Dev ; 30(7): 969-979, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29207253

ABSTRACT

Besides androgenic dependence, other hormones also influence the prostate biology. Prolactin has been described as an important hormone associated with maintenance of prostatic morphophysiology; however, there is a lack of information on the involvement of prolactin during prostate development and growth. This study aimed to evaluate whether perinatal prolactin modulation interferes with rat ventral prostate (VP) development and maturation. Therefore, prolactin or bromocriptine (an inhibitor of prolactin release from the pituitary) were administered to Sprague Dawley rats from postnatal Day (PND) 12 to PND 21 or 35. Animals were then killed and serum hormonal quantification, VP morphological-stereological and immunohistochemical analyses and western blotting reactions were employed. Our results demonstrate that prolactin blockage increased serum testosterone on PND 21, which reflected an increase in anogenital distance. Although prolactin modulation did not interfere with VP weight, it modified VP morphology by dilating the acinar lumen and reducing epithelial cell height. Prolactin activated the signal transducer and activator of transcription (STAT) downstream pathway, increased androgen receptor expression and epithelial proliferation. In addition, prolactin and bromocriptine also increased expression of cytokeratin 18, a marker of luminal-differentiated cells. In conclusion, the VP responds to prolactin modulation through a mechanism of increasing the epithelial proliferative response and dynamics of cell differentiation, especially in animals treated for a more prolonged period.


Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Prolactin/metabolism , Prostate/growth & development , Animals , Bromocriptine/pharmacology , Hormone Antagonists/pharmacology , Keratin-18/metabolism , Male , Prolactin/pharmacology , Prostate/drug effects , Prostate/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Androgen/metabolism , Testosterone/blood
14.
Eur J Obstet Gynecol Reprod Biol ; 221: 81-88, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29275277

ABSTRACT

OBJECTIVE: To analyze the distribution and quantification of the key structural extracellular matrix components of the urethral tissue in a rat model of hyperglycemia and pregnancy. STUDY DESIGN: A total of 120 female Wistar rats were distributed into the following four experimental groups: virgin, pregnant, hyperglycemic and hyperglycemic + pregnant groups. The urethra was harvested for histochemical, morphometric, immunohistochemical, Western blot and glycosaminoglycan analyses. All protocols were approved by the Institutional Animal Care and Use Committee of Botucatu Medical School (process number 828-2010). RESULTS: The hyperglycemic + pregnant group showed significantly increased stiffness in urethral tissue. The total striated muscle was decreased, with increased deposition of collagen fibers around the muscle fibers and a change in the organization of the collagen fibrils. An increase in the relative collagen type I/III ratio and a decrease in total glycosaminoglycans were also observed. CONCLUSIONS: This study provides the first line of experimental evidence supporting a metabolic relationship between hyperglycemia and urethral remodeling of connective tissue in pregnant rats. The different organization of the collagen fibrils and the profile of glycosaminoglycans found in urethral samples suggest that the pathology of the urethral fibromuscular system could be related to hyperglycemia-induced pelvic floor dysfunction in women, which has direct clinical implications with the possibility to develop new multidisciplinary treatments for improving the health care of these women.


Subject(s)
Extracellular Matrix/metabolism , Hyperglycemia/metabolism , Urethra/metabolism , Animals , Collagen/metabolism , Connective Tissue/metabolism , Female , Glycosaminoglycans/metabolism , Muscle, Skeletal/metabolism , Pregnancy , Rats , Rats, Wistar
15.
Prostate ; 78(2): 95-103, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29134671

ABSTRACT

BACKGROUND: Androgen deprivation results in massive apoptosis in the prostate gland. Macrophages are actively engaged in phagocytosing epithelial cell corpses. However, it is unknown whether microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis (LAP) is involved and contribute to prevent inflammation. METHODS: Flow cytometry, RT-PCR and immunohistochemistry were used to characterize the macrophage subpopulation residing in the epithelial layer of the rat ventral prostate (VP) after castration. Stereology was employed to determine variations in the number of ED1 and ED2. Mice were treated with either chloroquine or L-asparagine to block autophagy. RESULTS: M1 (iNOS-positive) and M2 macrophages (MRC1+ and ARG1+) were not found in the epithelium at day 5 after castration. The percentage of CD68+ (ED1) and CD163+ (ED2) phenotypes increased after castration but only CD68+ cells were present in the epithelium. RT-PCR showed increased content of the autophagy markers Bcl1 and LC3 after castration. In addition, immunohistochemistry showed the presence of LC3+ and ATG5+ cells in the epithelium. Double immunohistochemistry showed these cells to be CD68+ /LC3+ , compatible with the LAP phenotype. LC3+ cells accumulate significantly after castration. Chloroquine and L-asparagine administration caused inflammation of the glands at day 5 after castration. CONCLUSIONS: CD68+ macrophages phagocytose apoptotic cell corpses and activate the LAP pathway, thereby contributing to the preservation of a non-inflammed microenvironment. Marked inflammation was detected when autophagy blockers were administered to castrated animals.


Subject(s)
Asparagine/pharmacology , Chloroquine/pharmacology , Macrophages/immunology , Orchiectomy/adverse effects , Phagocytosis , Prostate , Prostatitis/prevention & control , Androgens/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Antigens, CD/analysis , Antigens, Differentiation, Myelomonocytic/analysis , Apoptosis/immunology , Cellular Microenvironment/immunology , Disease Models, Animal , Male , Microtubule-Associated Proteins/metabolism , Orchiectomy/methods , Phagocytosis/drug effects , Phagocytosis/immunology , Prostate/immunology , Prostate/pathology , Prostatic Neoplasms/surgery , Prostatitis/etiology , Prostatitis/metabolism , Rats
16.
J Mol Histol ; 48(5-6): 403-415, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28988314

ABSTRACT

Despite the androgenic dependence, other hormones, growth factors, and cytokines are necessary to support prostatic growth and maintain the glandular structure; among them, prolactin is a non-steroidal hormone secreted mainly by the pituitary gland. However, extra-pituitary expression of prolactin, such as in the prostate, has also been demonstrated, highlighting the paracrine and autocrine actions of prolactin within the prostate. Here, we investigated whether prolactin modulation alters ventral prostate (VP) morphophysiology in adult castrated rats. Sprague Dawley rats were castrated and after 21 days, divided into ten experimental groups (n = 6/group): castrated control: castrated animals that did not receive treatment; castrated+testosterone: castrated animals that received T (4 mg/kg/day); castrated+PRL (PRL): castrated animals receiving prolactin (0.3 mg/kg/day); castrated+T+PRL: castrated animals that received a combination of testosterone and prolactin; and castrated+bromocriptine (BR): castrated animals that received bromocriptine (0.4 mg/kg/day). The control group included intact animals. The animals were treated for 3 or 10 consecutive days. At the end of experimental period, the animals were euthanized, and the blood and VP lobes were collected and analyzed by different methods. The main findings were that the administration of prolactin to castrated rats did not exert anabolic effects on the VP. Although we observed activation of downstream prolactin signaling after prolactin administration, this was not enough to overcome the prostatic androgen deficiency. Likewise, there was no additional glandular involution in the castrated group treated with bromocriptine. We concluded that despite stimulating the downstream signaling pathway, exogenous prolactin does not act on VP in the absence or presence of high levels of testosterone.


Subject(s)
Aging/metabolism , Castration , Hormone Replacement Therapy , Prolactin/metabolism , Prostate/metabolism , Testosterone/therapeutic use , Animals , Blotting, Western , Immunohistochemistry , Ki-67 Antigen/metabolism , Male , Rats, Sprague-Dawley , Receptors, Androgen/metabolism
17.
J Cell Mol Med ; 21(12): 3309-3321, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28840644

ABSTRACT

Telocytes are CD34-positive interstitial cells, known to exert several functions, one of which is a role in tissue organisation, previously demonstrated by telocytes in the myocardium. The existence of telocytes in the prostate has recently been reported, however, there is a lack of information regarding the function of these cells in prostate tissue, and information regarding the possible role of these cells in prostatic development. This study used immunofluorescence techniques in prostate tissue and prostatic telocytes in culture to determine the relationship between telocytes and prostate morphogenesis. Furthermore, immunofluorescent labelling of telocytes was performed on prostate tissue at different stages of early postnatal development. Initially, CD34-positive cells are found at the periphery of the developing alveoli, later in the same region, c-kit-positive cells and cells positive for both factors are verified and CD34-positive cells were predominantly observed in the interalveolar stroma and the region surrounding the periductal smooth muscle. Fluorescence assays also demonstrated that telocytes secrete TGF-ß1 and are ER-Beta (ERß) positive. The results suggest that telocytes play a changing role during development, initially supporting the differentiation of periductal and perialveolar smooth muscle, and later, producing dense networks that separate alveoli groups and form a barrier between the interalveolar region and periurethral smooth muscle. We conclude that telocytes play a relevant role in prostate tissue organisation during postnatal development.


Subject(s)
Gerbillinae/growth & development , Organogenesis/genetics , Prostate/cytology , Telocytes/cytology , Animals , Antigens, CD34/genetics , Antigens, CD34/metabolism , Biomarkers/metabolism , Cell Differentiation , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Gene Expression , Gerbillinae/genetics , Gerbillinae/metabolism , Humans , Male , Primary Cell Culture , Prostate/growth & development , Prostate/metabolism , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Telocytes/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
18.
Gen Comp Endocrinol ; 246: 258-269, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28041790

ABSTRACT

Experimental data demonstrated the negative impact of maternal protein malnutrition (MPM) on rat prostate development, but the mechanism behind the impairment of prostate growth has not been well understood. Male Sprague Dawley rats, borned to dams fed a normal protein diet (CTR group, 17% protein diet), were compared with those borned from dams fed a low protein diet (6% protein diet) during gestation (GLP group) or gestation and lactation (GLLP). The ventral prostate lobes (VP) were removed at post-natal day (PND) 10 and 21, and analyzed via different methods. The main findings were low birth weight, a reduction in ano-genital distance (AGD, a testosterone-dependent parameter), and an impairment of prostate development. A delay in prostate morphogenesis was associated with a reduced testosterone levels and angiogenic process through downregulation of aquaporin-1 (AQP-1), insulin/IGF-1 axis and VEGF signaling pathway. Depletion of the microvascular network, which occurs in parallel to the impairment of proliferation and differentiation of the epithelial cells, affects the bidirectional flux between blood vessels impacting prostatic development. In conclusion, our data support the hypothesis that a reduction in microvascular angiogenesis, especially in the subepithelial compartment, is associated to the impairment of prostate morphogenesis in the offspring of MPM dams.


Subject(s)
Fetal Development , Fetal Nutrition Disorders/pathology , Microvessels/embryology , Neovascularization, Pathologic/pathology , Prostate/pathology , Protein-Energy Malnutrition/physiopathology , Animals , Animals, Newborn , Blotting, Western , Female , Insulin/blood , Insulin-Like Growth Factor I/metabolism , Lactation/physiology , Male , Pregnancy , Prostate/blood supply , Prostate/metabolism , Rats , Rats, Sprague-Dawley , Testosterone/blood , Vascular Endothelial Growth Factor A/metabolism
19.
Anat Rec (Hoboken) ; 300(2): 291-299, 2017 02.
Article in English | MEDLINE | ID: mdl-27788294

ABSTRACT

Gestational diabetes mellitus (GDM) has increased in recent years. Although the cellular and molecular mechanisms involved in GDM-increased risk factors to offspring remained poorly understood, some studies suggested an association between an increase in oxidative stress induced by maternal hyperglycemia and complications for both mothers and newborns. Here, we investigated the impact of maternal hyperglycemia followed by maternal insulin replacement during lactation on the expression of antioxidant enzymes and mast cell number in offspring ventral prostate (VP) at puberty. Pregnant rats were divided into three groups: control (CT); streptozotocin-induced maternal hyperglycemia (MH); and MH plus maternal insulin replacement during lactation (MHI). Male offspring were euthanized at postnatal day (PND) 60 and the VP was removed and processed for histology and Western blotting analyses. Maternal hyperglycemia delayed prostate maturation, and increased mast cell number catalase (CAT), superoxide dismutase (SOD), glutatione-s-transferase (GST-pi), and cyclooxygenase-2 (Cox-2) expression in the offspring of hyperglycemic dams. Maternal insulin replacement restored VP structure, mast cell number and antioxidant protein expression, except for Cox-2, which remained higher in the MHI group. Thus, an increase in oxidative stress induced by intrauterine hyperglycemia impacts prostate development and maturation, which persists until puberty. The overall improvement of maternal metabolism after insulin administration contributes to the restoration of prostate antioxidant enzymes and secretory function. Taken together, our results highlighted that imbalanced physiological maternal-fetal interaction contributes to the impairment of reproductive performance of the offspring from diabetic mothers. Anat Rec, 300:291-299, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes, Gestational/metabolism , Mast Cells/metabolism , Prenatal Exposure Delayed Effects/metabolism , Prostate/metabolism , Animals , Blood Glucose/metabolism , Cell Count , Cyclooxygenase 2/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/pathology , Diabetes, Gestational/drug therapy , Diabetes, Gestational/enzymology , Diabetes, Gestational/pathology , Female , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin/pharmacology , Insulin/therapeutic use , Male , Mast Cells/drug effects , Mast Cells/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Pregnancy , Prenatal Exposure Delayed Effects/enzymology , Prenatal Exposure Delayed Effects/pathology , Prostate/drug effects , Prostate/enzymology , Prostate/pathology , Rats , Rats, Wistar
20.
Biochem Biophys Res Commun ; 457(4): 538-41, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25600809

ABSTRACT

Matrix metalloproteinases (MMPs) are zinc (Zn(2+)) and calcium (Ca(2+)) dependant endopeptidases, capable of degradation of numerous components of the extracellular matrix. Cadmium (Cd(2+)) is a well known environmental contaminant which could impair the activity of MMPs. In this sense, this study was conducted to evaluate if Cd(2+) intake inhibits these endopeptidases activities at the rat prostate and testicles and if it directly inhibits the activity of MMP2 and MMP9 at gelatinolytic assays when present in the incubation buffer. To investigate this hypothesis, Wistar rats (5 weeks old), were given tap water (untreated, n = 9), or 15 ppm CdCl2 diluted in drinking water, during 10 weeks (n = 9) and 20 weeks (n = 9). The animals were euthanized and their ventral prostate, dorsal prostate, and testicles were removed. These tissue samples were processed for protein extraction and subjected to gelatin zymography evaluation. Additionally, we performed an experiment of gelatin zymography in which 5 µM or 2 mM cadmium chloride (CdCl2) was directly dissolved at the incubation buffer, using the prostatic tissue samples from untreated animals that exhibited the highest MMP2 and MMP9 activities in the previous experiment. We have found that CdCl2 intake in the drinking water led to the inhibition of 35% and 30% of MMP2 and MMP9 (p < 0.05) at the ventral prostate and testis, respectively, in Cd(2+) treated animals when compared to controls. Moreover, the activities of the referred enzymes were 80% and 100% inhibited by 5 µM and 2 mM of CdCl2, respectively, even in the presence of 10 mM of CaCl2 within the incubation buffer solution. These important findings demonstrate that environmental cadmium contamination may deregulate the natural balance in the extracellular matrix turnover, through MMPs downregulation, which could contribute to the toxic effects observed in prostatic and testicular tissue after its exposure.


Subject(s)
Cadmium/toxicity , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase Inhibitors/toxicity , Prostate/enzymology , Testis/enzymology , Water Pollutants, Chemical/toxicity , Animals , Male , Prostate/drug effects , Rats, Wistar , Testis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...