Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35567206

ABSTRACT

Propolis composition depends on several factors. The classification of propolis is based on its geographical location, color and agricultural characteristics. It is also classified according to the flora where the bees collect the resins, which represent the raw material for propolis production. Propolis possesses high antioxidant activity determined by its phenolic compounds. Due to diverse composition and possible impact on human health, eight samples of propolis were evaluated for their phenolic composition and antioxidant activity. Samples of Polish, Romanian, Turkish and Uruguayan origin propolis were used for phenolic spectrum determination using high performance liquid chromatography and photodiode array detection and in vitro DPPH and ABTS methods were used to determine the antioxidant activity of the extracts. PCA and HCA models were applied to evaluate the correlation between isolated polyphenols and antioxidant activity. The results confirmed variability in propolis composition depending on the geographical region of collection and the plant sources, and correlation between chemical composition and antioxidant activity. Results of PCA and HCA analyses confirm that Polish propolis is similar to that from different provinces of Romania, while Turkish and Uruguay are completely different. Polish and Romanian propolis belong to the poplar type. The assessed phenolic compounds of propolis samples used in the study are responsible for its antioxidant effect. The observed antioxidant activity of the analyzed samples may suggest directing subsequent research on prophylactic and therapeutic properties concerning cardiovascular, metabolic, neurodegenerative, and cancerous diseases, which are worth continuing.

2.
Molecules ; 27(1)2022 Jan 02.
Article in English | MEDLINE | ID: mdl-35011503

ABSTRACT

Conducted studies indicate the relationship between oral health and systemic diseases. Moreover, the latest research indicated that cariogenic bacteria may severely influence the course of SARS-CoV-2 infection and increase risk of COVID-19 complications. This article aims to review various applications of propolis and pay attention to a healthy diet rich in polyphenols, which may allow the reduction of dental plaque accumulation. A literature review has been conducted from June until November 2021. It showed that propolis could be a useful agent in decreasing the accumulation of dental plaque. Moreover, a diet rich in polyphenols prevents cariogenic bacteria and reduces the accumulation of dental plaque. A reduction of a dental plaque may influence the risk of a severe course of COVID-19. Therefore, propolis and a diet rich in polyphenols may play an important role in prophylaxis of systemic diseases. Recently, it has been proven that oral infection may affect cardiovascular system, musculoskeletal system, respiratory system, nervous system, as well as may be a risk factor for diabetes mellitus. These aspects should stimulate clinicians to further research about polyphenols.


Subject(s)
Anti-Infective Agents/therapeutic use , COVID-19/prevention & control , Cariostatic Agents/therapeutic use , Dental Plaque/drug therapy , Diet , Propolis/therapeutic use , SARS-CoV-2/drug effects , COVID-19/epidemiology , COVID-19/virology , Humans , Oral Health
3.
Molecules ; 26(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34576987

ABSTRACT

Current studies suggest that cariogenic bacteria in dental plaque influence the severity of COVID-19 complications since the oral cavity is a reservoir for respiratory pathogens potentially responsible for the development of hospital-acquired pneumonia. This article focuses on the association between dental plaque and COVID-19 concerning the influence of altered oral biofilm on the risk of increased severity of SARS-CoV-2 infection. Moreover, it concentrates on the usefulness of propolis, with its apitherapeutic antibacterial properties, for treating oral bacterial infections co-occurring with SARS-CoV-2 infection. A review of the literature on PubMed, Cochrane Library and Medline between 2000 and 2021 revealed 56 published articles indicating that a link between dental plaque and COVID-19 complications was probable. Furthermore, they indicated that propolis may minimize COVID-19 severity by reducing dental plaque accumulation. The possibility that improved oral health could reduce the risk of COVID-19 complications should be of interest to scientists.


Subject(s)
Biofilms , COVID-19 Drug Treatment , COVID-19 , Dental Caries , Dental Plaque , Mouth Diseases , Propolis/therapeutic use , Animals , Anti-Infective Agents/therapeutic use , Biofilms/drug effects , COVID-19/microbiology , Dental Caries/drug therapy , Dental Caries/microbiology , Dental Plaque/drug therapy , Dental Plaque/microbiology , Humans , Mouth Diseases/drug therapy , Mouth Diseases/microbiology , Oral Health
4.
J Oral Biosci ; 63(1): 23-34, 2021 03.
Article in English | MEDLINE | ID: mdl-33465498

ABSTRACT

BACKGROUND: Propolis is a resinous product that is collected from plants by bees to cover holes and crevices in their hives. Propolis has potent antibacterial, antiviral, anti-inflammatory, wound healing, and anticancer properties. Propolis has been used therapeutically by humans for centuries, including the treatment of dental caries and mouth infections. HIGHLIGHT: This review article attempts to analyze the potential use of propolis in general dentistry and oral health management. CONCLUSION: Propolis is potentially useful in dentistry and oral health management based on available in vitro, in vivo, and ex vivo studies, as well as human clinical trials.


Subject(s)
Anti-Infective Agents , Dental Caries , Propolis , Animals , Anti-Infective Agents/therapeutic use , Bees , Dental Caries/drug therapy , Dentistry , Oral Health , Propolis/therapeutic use
5.
J Endod ; 43(8): 1332-1336, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28578886

ABSTRACT

INTRODUCTION: The aim of this study was to evaluate the efficacy of chitosan nanoparticles (CNPs) and ethanolic propolis extract (EPE) incorporated into a calcium hydroxide paste (Ca[OH]2) to kill bacterial biofilms. METHODS: Human root canal dentin was infected with Enterococcus faecalis for 21 days and also intraorally for 48 hours followed by incubation in brain-heart infusion for 48 hours to standardize biofilm growth. Ca(OH)2 pastes associated or not with CNPs or EPE were tested on biofilms for 7 and 14 days. Distilled water was used for control purposes. After the treatment procedures, microbiological analysis was performed to determine the reduction in E. faecalis colonies. Confocal microscopy was used to determine the percentage of cell viability in polymicrobial biofilms before and after the exposure to the experimental intracanal medications. RESULTS: All experimental pastes were able to significantly reduce the E. faecalis colony-forming units (CFU) after 7 or 14 days (P < .05). However, the CFU reduction was significantly improved when CNPs were incorporated into the Ca(OH)2 paste (P < .05). The multispecies biofilms treated with Ca(OH)2 showed similar percentages of bacterial viability to the control regardless of the exposure time (P > .05). The viable cell count significantly dropped in the Ca(OH)2/CNPs groups for both 7 and 14 days (P < .05), whereas the Ca(OH)2/EPE groups were only effective in eliminating bacteria during the first 7 days of treatment (P < .05). CONCLUSIONS: Incorporating CNPs into pastes of Ca(OH)2 could potentially be beneficial when using interappointment intracanal medications because of their ability to kill bacteria in short- and long-term exposure.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Calcium Hydroxide/pharmacology , Chitosan/pharmacology , Dental Pulp Cavity/microbiology , Propolis/pharmacology , Enterococcus faecalis/drug effects , Hydrogen-Ion Concentration , In Vitro Techniques , Microbial Viability , Microscopy, Confocal , Nanoparticles , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...