Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Parasitol ; 69(1): 415-425, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38165555

ABSTRACT

PURPOSE: Antimalarial drug resistance is a global public health problem that leads to treatment failure. Synergistic drug combinations can improve treatment outcomes and delay the development of drug resistance. Here, we describe the implementation of a freely available computational tool, Machine Learning Synergy Predictor (MLSyPred©), to predict potential synergy in antimalarial drug combinations. METHODS: The MLSyPred© synergy prediction method extracts molecular fingerprints from the drugs' biochemical structures to use as features and also cleans and prepares the raw data. Five machine learning algorithms (Logistic Regression, Random Forest, Support vector machine, Ada Boost, and Gradient Boost) were implemented to build prediction models. Implementation and application of the MLSyPred© tool were tested using datasets from 1540 combinations of 79 drugs and compounds biologically evaluated in pairs for three strains of Plasmodium falciparum (3D7, HB3, and Dd2). RESULTS: The best prediction models were obtained using Logistic Regression for antimalarials with the strains Dd2 and HB3 (0.81 and 0.70 AUC, respectively) and Random Forest for antimalarials with 3D7 (0.69 AUC). The MLSyPred© tool yielded 45% precision for synergistically predicted antimalarial drug combinations that were annotated and biologically validated, thus confirming the functionality and applicability of the tool. CONCLUSION:  The MLSyPred© tool is freely available and represents a promising strategy for discovering potential synergistic drug combinations for further development as novel antimalarial therapies.


Subject(s)
Antimalarials , Drug Combinations , Drug Synergism , Machine Learning , Plasmodium falciparum , Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Humans , Drug Therapy, Combination , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology
2.
Genes (Basel) ; 14(9)2023 09 17.
Article in English | MEDLINE | ID: mdl-37761953

ABSTRACT

Cardiovascular disease (CVD) is one of the leading causes of death in Puerto Rico, where clopidogrel is commonly prescribed to prevent ischemic events. Genetic contributors to both a poor clopidogrel response and the severity of CVD have been identified mainly in Europeans. However, the non-random enrichment of single-nucleotide polymorphisms (SNPs) associated with clopidogrel resistance within risk loci linked to underlying CVDs, and the role of admixture, have yet to be tested. This study aimed to assess the possible interaction between genetic biomarkers linked to CVDs and those associated with clopidogrel resistance among admixed Caribbean Hispanics. We identified 50 SNPs significantly associated with CVDs in previous genome-wide association studies (GWASs). These SNPs were combined with another ten SNPs related to clopidogrel resistance in Caribbean Hispanics. We developed Python scripts to determine whether SNPs related to CVDs are in close proximity to those associated with the clopidogrel response. The average and individual local ancestry (LAI) within each locus were inferred, and 60 random SNPs with their corresponding LAIs were generated for enrichment estimation purposes. Our results showed no CVD-linked SNPs in close proximity to those associated with the clopidogrel response among Caribbean Hispanics. Consequently, no genetic loci with a dual predictive role for the risk of CVD severity and clopidogrel resistance were found in this population. Native American ancestry was the most enriched within the risk loci linked to CVDs in this population. The non-random enrichment of disease susceptibility loci with drug-response SNPs is a new frontier in Precision Medicine that needs further attention.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Clopidogrel/pharmacology , Ethnicity/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics
3.
Stroke Res Treat ; 2021: 8819896, 2021.
Article in English | MEDLINE | ID: mdl-33505650

ABSTRACT

Non-Hispanic whites present with higher atrial fibrillation (AF) prevalence than other racial minorities living in the mainland USA. In two hospital-based studies, Puerto Rican Hispanics had a lower prevalence of atrial fibrillation of 2.5% than non-Hispanic Whites with 5.7%. This data is particularly controversial because Hispanics possess a higher prevalence of traditional risk factors for developing AF yet have a lower AF prevalence. This phenomenon is known as the atrial fibrillation paradox. Despite recent advancements in understanding AF, its pathogenesis remains unclear. In this study, we compared a genetic dataset of Puerto Rican Hispanics to 111 SNP known to be associated with AF in a large European cohort and determine if they are associated with AF susceptibility in our cohort. To achieve this aim, we performed a secondary analysis of existing data using the following two studies: (1) The Pharmacogenetics of Warfarin in Puerto Ricans study and the (2) A Genomic Approach for Clopidogrel in Caribbean Hispanics, and assess for the presence of European SNPs associated with AF from the genome-wide association study of 1 million people identifies 111 loci for atrial fibrillation. We used data from 555 cardiovascular Puerto Rican Hispanic patients, consisting of 486 control and 69 cases. We found that the following SNPs showed significant association with AF in PHR: rs2834618, rs6462079, rs7508, rs2040862, and rs10458660. Some of these SNPs are proteins involved in lysosomal activities responsible for breaking ceramides to sphingosines and collagen deposition around atrial cardiomyocytes. Furthermore, we performed a machine learning analysis and determined that Native American admixture and heart failure were strongly predictive of AF in PHR. For the first time, this study provides some genetic insight into AF's mechanisms in a Puerto Rican Hispanic cohort.

4.
Cardiovasc Revasc Med ; 22: 22-28, 2021 01.
Article in English | MEDLINE | ID: mdl-32591310

ABSTRACT

BACKGROUND: Transcatheter mitral valve repair (TMVR) utilization has increased significantly in the United States over the last years. Yet, a risk-prediction tool for adverse events has not been developed. We aimed to generate a machine-learning-based algorithm to predict in-hospital mortality after TMVR. METHODS: Patients who underwent TMVR from 2012 through 2015 were identified using the National Inpatient Sample database. The study population was randomly divided into a training set (n = 636) and a testing set (n = 213). Prediction models for in-hospital mortality were obtained using five supervised machine-learning classifiers. RESULTS: A total of 849 TMVRs were analyzed in our study. The overall in-hospital mortality was 3.1%. A naïve Bayes (NB) model had the best discrimination for fifteen variables, with an area under the receiver-operating curve (AUC) of 0.83 (95% CI, 0.80-0.87), compared to 0.77 for logistic regression (95% CI, 0.58-0.95), 0.73 for an artificial neural network (95% CI, 0.55-0.91), and 0.67 for both a random forest and a support-vector machine (95% CI, 0.47-0.87). History of coronary artery disease, of chronic kidney disease, and smoking were the three most significant predictors of in-hospital mortality. CONCLUSIONS: We developed a robust machine-learning-derived model to predict in-hospital mortality in patients undergoing TMVR. This model is promising for decision-making and deserves further clinical validation.


Subject(s)
Mitral Valve Insufficiency , Mitral Valve , Bayes Theorem , Hospital Mortality , Humans , Machine Learning , Mitral Valve/diagnostic imaging , Mitral Valve/surgery , United States/epidemiology
5.
JACC Cardiovasc Interv ; 12(14): 1328-1338, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31320027

ABSTRACT

OBJECTIVES: This study sought to develop and compare an array of machine learning methods to predict in-hospital mortality after transcatheter aortic valve replacement (TAVR) in the United States. BACKGROUND: Existing risk prediction tools for in-hospital complications in patients undergoing TAVR have been designed using statistical modeling approaches and have certain limitations. METHODS: Patient data were obtained from the National Inpatient Sample database from 2012 to 2015. The data were randomly divided into a development cohort (n = 7,615) and a validation cohort (n = 3,268). Logistic regression, artificial neural network, naive Bayes, and random forest machine learning algorithms were applied to obtain in-hospital mortality prediction models. RESULTS: A total of 10,883 TAVRs were analyzed in our study. The overall in-hospital mortality was 3.6%. Overall, prediction models' performance measured by area under the curve were good (>0.80). The best model was obtained by logistic regression (area under the curve: 0.92; 95% confidence interval: 0.89 to 0.95). Most obtained models plateaued after introducing 10 variables. Acute kidney injury was the main predictor of in-hospital mortality ranked with the highest mean importance in all the models. The National Inpatient Sample TAVR score showed the best discrimination among available TAVR prediction scores. CONCLUSIONS: Machine learning methods can generate robust models to predict in-hospital mortality for TAVR. The National Inpatient Sample TAVR score should be considered for prognosis and shared decision making in TAVR patients.


Subject(s)
Decision Support Techniques , Hospital Mortality , Machine Learning , Transcatheter Aortic Valve Replacement/mortality , Aged , Aged, 80 and over , Clinical Decision-Making , Databases, Factual , Female , Humans , Male , Predictive Value of Tests , Risk Assessment , Risk Factors , Transcatheter Aortic Valve Replacement/adverse effects , Treatment Outcome , United States/epidemiology
6.
Front Pharmacol ; 10: 1550, 2019.
Article in English | MEDLINE | ID: mdl-32038238

ABSTRACT

Despite some previous examples of successful application to the field of pharmacogenomics, the utility of machine learning (ML) techniques for warfarin dose predictions in Caribbean Hispanic patients has yet to be fully evaluated. This study compares seven ML methods to predict warfarin dosing in Caribbean Hispanics. This is a secondary analysis of genetic and non-genetic clinical data from 190 cardiovascular Hispanic patients. Seven ML algorithms were applied to the data. Data was divided into 80 and 20% to be used as training and test sets. ML algorithms were trained with the training set to obtain the models. Model performance was determined by computing the corresponding mean absolute error (MAE) and % patients whose predicted optimal dose were within ±20% of the actual stabilization dose, and then compared between groups of patients with "normal" (i.e., > 21 but <49 mg/week), low (i.e., ≤21 mg/week, "sensitive"), and high (i.e., ≥49 mg/week, "resistant") dose requirements. Random forest regression (RFR) significantly outperform all other methods, with a MAE of 4.73 mg/week and 80.56% of cases within ±20% of the actual stabilization dose. Among those with "normal" dose requirements, RFR performance is also better than the rest of models (MAE = 2.91 mg/week). In the "sensitive" group, support vector regression (SVR) shows superiority over the others with lower MAE of 4.79 mg/week. Finally, multivariate adaptive splines (MARS) shows the best performance in the resistant group (MAE = 7.22 mg/week) and 66.7% of predictions within ±20%. Models generated by using RFR, MARS, and SVR algorithms showed significantly better predictions of weekly warfarin dosing in the studied cohorts than other algorithms. Better performance of the ML models for patients with "normal," "sensitive," and "resistant" to warfarin were obtained when compared to other populations and previous statistical models.

SELECTION OF CITATIONS
SEARCH DETAIL
...