Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
JCO Precis Oncol ; 8: e2300453, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38412388

ABSTRACT

PURPOSE: Establishing accurate age-related penetrance figures for the broad range of cancer types that occur in individuals harboring a pathogenic germline variant in the TP53 gene is essential to determine the most effective clinical management strategies. These figures also permit optimal use of cosegregation data for classification of TP53 variants of unknown significance. Penetrance estimation can easily be affected by bias from ascertainment criteria, an issue not commonly addressed by previous studies. MATERIALS AND METHODS: We performed a maximum likelihood penetrance estimation using full pedigree data from a multicenter study of 146 TP53-positive families, incorporating adjustment for the effect of ascertainment and population-specific background cancer risks. The analysis included pedigrees from Australia, Spain, and United States, with phenotypic information for 4,028 individuals. RESULTS: Core Li-Fraumeni syndrome (LFS) cancers (breast cancer, adrenocortical carcinoma, brain cancer, osteosarcoma, and soft tissue sarcoma) had the highest hazard ratios of all cancers analyzed in this study. The analysis also detected a significantly increased lifetime risk for a range of cancers not previously formally associated with TP53 pathogenic variant status, including colorectal, gastric, lung, pancreatic, and ovarian cancers. The cumulative risk of any cancer type by age 50 years was 92.4% (95% CI, 82.2 to 98.3) for females and 59.7% (95% CI, 39.9 to 81.3) for males. Females had a 63.3% (95% CI, 35.6 to 90.1) cumulative risk of developing breast cancer by age 50 years. CONCLUSION: The results from maximum likelihood analysis confirm the known high lifetime risk for the core LFS-associated cancer types providing new risk estimates and indicate significantly increased lifetime risks for several additional cancer types. Accurate cancer risk estimates will help refine clinical recommendations for TP53 pathogenic variant carriers and improve TP53 variant classification.


Subject(s)
Breast Neoplasms , Li-Fraumeni Syndrome , Male , Female , Humans , United States , Middle Aged , Li-Fraumeni Syndrome/diagnosis , Li-Fraumeni Syndrome/genetics , Genes, p53/genetics , Pedigree , Tumor Suppressor Protein p53/genetics , Genetic Predisposition to Disease/genetics , Breast Neoplasms/genetics , Risk Factors
2.
J Mol Diagn ; 26(1): 17-28, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37865290

ABSTRACT

Establishing the pathogenic nature of variants in ATM, a gene associated with breast cancer and other hereditary cancers, is crucial for providing patients with adequate care. Unfortunately, achieving good variant classification is still difficult. To address this challenge, we extended the range of in silico tools with a series of graphical tools devised for the analysis of computational evidence by health care professionals. We propose a family of fast and easy-to-use graphical representations in which the impact of a variant is considered relative to other pathogenic and benign variants. To illustrate their value, the representations are applied to three problems in variant interpretation. The assessment of computational pathogenicity predictions showed that the graphics provide an intuitive view of prediction reliability, complementing and extending conventional numerical reliability indexes. When applied to variant of unknown significance populations, the representations shed light on the nature of these variants and can be used to prioritize variants of unknown significance for further studies. In a third application, the graphics were used to compare the two versions of the ATM-adapted American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines, obtaining valuable information on their relative virtues and weaknesses. Finally, a server [ATMision (ATM missense in silico interpretation online)] was generated for users to apply these representations in their variant interpretation problems, to check the ATM-adapted guidelines' criteria for computational evidence on their variant(s) and access different sources of information.


Subject(s)
Breast Neoplasms , Mutation, Missense , Humans , Female , Reproducibility of Results , Mutation, Missense/genetics , Genomics , Breast Neoplasms/genetics , Ataxia Telangiectasia Mutated Proteins/genetics
3.
Nucleic Acids Res ; 2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38142462

ABSTRACT

BRCA2 tumor suppressor protein ensures genome integrity by mediating DNA repair via homologous recombination (HR). This function is executed in part by its canonical DNA binding domain located at the C-terminus (BRCA2CTD), the only folded domain of the protein. Most germline pathogenic missense variants are located in this highly conserved region which binds to single-stranded DNA (ssDNA) and to the acidic protein DSS1. These interactions are essential for the HR function of BRCA2. Here, we report that the variant R2645G, identified in breast cancer and located at the DSS1 interface, unexpectedly increases the ssDNA binding activity of BRCA2CTDin vitro. Human cells expressing this variant display a hyper-recombination phenotype, chromosomal instability in the form of chromatid gaps when exposed to DNA damage, and increased PARP inhibitor sensitivity. In mouse embryonic stem cells (mES), this variant alters viability and confers sensitivity to cisplatin and Mitomycin C. These results suggest that BRCA2 interaction with ssDNA needs to be tightly regulated to limit HR and prevent chromosomal instability and we propose that this control mechanism involves DSS1. Given that several missense variants located within this region have been identified in breast cancer patients, these findings might have clinical implications for carriers.

4.
Genome Med ; 15(1): 85, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848928

ABSTRACT

BACKGROUND: Germline variants affecting the proofreading activity of polymerases epsilon and delta cause a hereditary cancer and adenomatous polyposis syndrome characterized by tumors with a high mutational burden and a specific mutational spectrum. In addition to the implementation of multiple pieces of evidence for the classification of gene variants, POLE and POLD1 variant classification is particularly challenging given that non-disruptive variants affecting the proofreading activity of the corresponding polymerase are the ones associated with cancer. In response to an evident need in the field, we have developed gene-specific variant classification recommendations, based on the ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology) criteria, for the assessment of non-disruptive variants located in the sequence coding for the exonuclease domain of the polymerases. METHODS: A training set of 23 variants considered pathogenic or benign was used to define the usability and strength of the ACMG/AMP criteria. Population frequencies, computational predictions, co-segregation data, phenotypic and tumor data, and functional results, among other features, were considered. RESULTS: Gene-specific variant classification recommendations for non-disruptive variants located in the exonuclease domain of POLE and POLD1 were defined. The resulting recommendations were applied to 128 exonuclease domain variants reported in the literature and/or public databases. A total of 17 variants were classified as pathogenic or likely pathogenic, and 17 as benign or likely benign. CONCLUSIONS: Our recommendations, with room for improvement in the coming years as more information become available on carrier families, tumor molecular characteristics and functional assays, are intended to serve the clinical and scientific communities and help improve diagnostic performance, avoiding variant misclassifications.


Subject(s)
Adenomatous Polyposis Coli , Colorectal Neoplasms , Humans , United States , Colorectal Neoplasms/genetics , Exonucleases , DNA Polymerase II/genetics , Adenomatous Polyposis Coli/diagnosis , Adenomatous Polyposis Coli/genetics , Germ Cells , DNA Polymerase III/genetics
5.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37511631

ABSTRACT

Pathogenicity predictors are computational tools that classify genetic variants as benign or pathogenic; this is currently a major challenge in genomic medicine. With more than fifty such predictors available, selecting the most suitable tool for clinical applications like genetic screening, molecular diagnostics, and companion diagnostics has become increasingly challenging. To address this issue, we have developed a cost-based framework that naturally considers the various components of the problem. This framework encodes clinical scenarios using a minimal set of parameters and treats pathogenicity predictors as rejection classifiers, a common practice in clinical applications where low-confidence predictions are routinely rejected. We illustrate our approach in four examples where we compare different numbers of pathogenicity predictors for missense variants. Our results show that no single predictor is optimal for all clinical scenarios and that considering rejection yields a different perspective on classifiers.


Subject(s)
Computational Biology , Genetic Testing , Computational Biology/methods , Genetic Testing/methods , Mutation, Missense
6.
Clin Cancer Res ; 29(16): 3037-3050, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37449874

ABSTRACT

PURPOSE: Germline pathogenic variants in CHEK2 confer moderately elevated breast cancer risk (odds ratio, OR ∼ 2.5), qualifying carriers for enhanced breast cancer screening. Besides pathogenic variants, dozens of missense CHEK2 variants of uncertain significance (VUS) have been identified, hampering the clinical utility of germline genetic testing (GGT). EXPERIMENTAL DESIGN: We collected 460 CHEK2 missense VUS identified by the ENIGMA consortium in 15 countries. Their functional characterization was performed using CHEK2-complementation assays quantifying KAP1 phosphorylation and CHK2 autophosphorylation in human RPE1-CHEK2-knockout cells. Concordant results in both functional assays were used to categorize CHEK2 VUS from 12 ENIGMA case-control datasets, including 73,048 female patients with breast cancer and 88,658 ethnicity-matched controls. RESULTS: A total of 430/460 VUS were successfully analyzed, of which 340 (79.1%) were concordant in both functional assays and categorized as functionally impaired (N = 102), functionally intermediate (N = 12), or functionally wild-type (WT)-like (N = 226). We then examined their association with breast cancer risk in the case-control analysis. The OR and 95% CI (confidence intervals) for carriers of functionally impaired, intermediate, and WT-like variants were 2.83 (95% CI, 2.35-3.41), 1.57 (95% CI, 1.41-1.75), and 1.19 (95% CI, 1.08-1.31), respectively. The meta-analysis of population-specific datasets showed similar results. CONCLUSIONS: We determined the functional consequences for the majority of CHEK2 missense VUS found in patients with breast cancer (3,660/4,436; 82.5%). Carriers of functionally impaired missense variants accounted for 0.5% of patients with breast cancer and were associated with a moderate risk similar to that of truncating CHEK2 variants. In contrast, 2.2% of all patients with breast cancer carried functionally wild-type/intermediate missense variants with no clinically relevant breast cancer risk in heterozygous carriers.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Checkpoint Kinase 2/genetics , Mutation, Missense , Germ-Line Mutation , Germ Cells
7.
Bioinformatics ; 39(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36916756

ABSTRACT

MOTIVATION: Germline variant classification allows accurate genetic diagnosis and risk assessment. However, it is a tedious iterative process integrating information from several sources and types of evidence. It should follow gene-specific (if available) or general updated international guidelines. Thus, it is the main burden of the incorporation of next-generation sequencing into the clinical setting. RESULTS: We created the vaRiants in HC (vaRHC) R package to assist the process of variant classification in hereditary cancer by: (i) collecting information from diverse databases; (ii) assigning or denying different types of evidence according to updated American College of Molecular Genetics and Genomics/Association of Molecular Pathologist gene-specific criteria for ATM, CDH1, CHEK2, MLH1, MSH2, MSH6, PMS2, PTEN, and TP53 and general criteria for other genes; (iii) providing an automated classification of variants using a Bayesian metastructure and considering CanVIG-UK recommendations; and (iv) optionally printing the output to an .xlsx file. A validation using 659 classified variants demonstrated the robustness of vaRHC, presenting a better criteria assignment than Cancer SIGVAR, an available similar tool. AVAILABILITY AND IMPLEMENTATION: The source code can be consulted in the GitHub repository (https://github.com/emunte/vaRHC) Additionally, it will be submitted to CRAN soon.


Subject(s)
Genetic Variation , Neoplasms , Humans , United States , Genetic Testing , Genetic Predisposition to Disease , Bayes Theorem , Genome, Human , Neoplasms/genetics , Automation
8.
Cancer Epidemiol Biomarkers Prev ; 32(3): 422-427, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36649146

ABSTRACT

BACKGROUND: The multifactorial risk prediction model BOADICEA enables identification of women at higher or lower risk of developing breast cancer. BOADICEA models genetic susceptibility in terms of the effects of rare variants in breast cancer susceptibility genes and a polygenic component, decomposed into an unmeasured and a measured component - the polygenic risk score (PRS). The current version was developed using a 313 SNP PRS. Here, we evaluated approaches to incorporating this PRS and alternative PRS in BOADICEA. METHODS: The mean, SD, and proportion of the overall polygenic component explained by the PRS (α2) need to be estimated. $\alpha $ was estimated using logistic regression, where the age-specific log-OR is constrained to be a function of the age-dependent polygenic relative risk in BOADICEA; and using a retrospective likelihood (RL) approach that models, in addition, the unmeasured polygenic component. RESULTS: Parameters were computed for 11 PRS, including 6 variations of the 313 SNP PRS used in clinical trials and implementation studies. The logistic regression approach underestimates $\alpha $, as compared with the RL estimates. The RL $\alpha $ estimates were very close to those obtained by assuming proportionality to the OR per 1 SD, with the constant of proportionality estimated using the 313 SNP PRS. Small variations in the SNPs included in the PRS can lead to large differences in the mean. CONCLUSIONS: BOADICEA can be readily adapted to different PRS in a manner that maintains consistency of the model. IMPACT: : The methods described facilitate comprehensive breast cancer risk assessment.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Risk Assessment/methods , Retrospective Studies , Risk Factors , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
9.
Commun Biol ; 5(1): 1061, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36203093

ABSTRACT

The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.


Subject(s)
Breast Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA Copy Number Variations , Female , Genetic Predisposition to Disease , Heterozygote , Humans , RNA, Messenger
11.
Fam Cancer ; 21(2): 211-227, 2022 04.
Article in English | MEDLINE | ID: mdl-34125377

ABSTRACT

The first International Workshop of the ATM and Cancer Risk group focusing on the role of Ataxia-Telangiectasia Mutated (ATM) gene in cancer was held on December 4 and 5, 2019 at Institut Curie in Paris, France. It was motivated by the fact that germline ATM pathogenic variants have been found to be associated with different cancer types. However, due to the lack of precise age-, sex-, and site-specific risk estimates, no consensus on management guidelines for variant carriers exists, and the clinical utility of ATM variant testing is uncertain. The meeting brought together epidemiologists, geneticists, biologists and clinicians to review current knowledge and on-going challenges related to ATM and cancer risk. This report summarizes the meeting sessions content that covered the latest results in family-based and population-based studies, the importance of accurate variant classification, the effect of radiation exposures for ATM variant carriers, and the characteristics of ATM-deficient tumors. The report concludes that ATM variant carriers outside of the context of Ataxia-Telangiectasia may benefit from effective cancer risk management and therapeutic strategies and that efforts to set up large-scale studies in the international framework to achieve this goal are necessary.


Subject(s)
Ataxia Telangiectasia , Breast Neoplasms , Neoplasms , Ataxia Telangiectasia/complications , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Breast Neoplasms/complications , Female , France , Genetic Predisposition to Disease , Heterozygote , Humans , Neoplasms/diagnosis , Neoplasms/genetics
12.
J Med Genet ; 59(1): 75-78, 2022 01.
Article in English | MEDLINE | ID: mdl-33219106

ABSTRACT

INTRODUCTION: Germline CNVs are important contributors to hereditary cancer. In genetic diagnostics, multiplex ligation-dependent probe amplification (MLPA) is commonly used to identify them. However, MLPA is time-consuming and expensive if applied to many genes, hence many routine laboratories test only a subset of genes of interest. METHODS AND RESULTS: We evaluated a next-generation sequencing (NGS)-based CNV detection tool (DECoN) as first-tier screening to decrease costs and turnaround time and expand CNV analysis to all genes of clinical interest in our diagnostics routine. We used DECoN in a retrospective cohort of 1860 patients where a limited number of genes were previously analysed by MLPA, and in a prospective cohort of 2041 patients, without MLPA analysis. In the retrospective cohort, 6 new CNVs were identified and confirmed by MLPA. In the prospective cohort, 19 CNVs were identified and confirmed by MLPA, 8 of these would have been lost in our previous MLPA-restricted detection strategy. Also, the number of genes tested by MLPA across all samples decreased by 93.0% in the prospective cohort. CONCLUSION: Including an in silico germline NGS CNV detection tool improved our genetic diagnostics strategy in hereditary cancer, both increasing the number of CNVs detected and reducing turnaround time and costs.


Subject(s)
DNA Copy Number Variations , Early Detection of Cancer , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Software , Costs and Cost Analysis , Genetic Predisposition to Disease , Genetic Testing/economics , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/economics , Humans , Mutation , Neoplasms/congenital , Neoplasms/diagnosis , Prospective Studies , Retrospective Studies , Sequence Analysis, DNA/economics , Sequence Analysis, DNA/methods
13.
Hum Mutat ; 43(3): 285-298, 2022 03.
Article in English | MEDLINE | ID: mdl-34923718

ABSTRACT

Defects in DNA repair genes have been extensively associated with cancer susceptibility. Germline pathogenic variants (GPV) in genes involved in homologous recombination repair pathways predispose to cancers arising mainly in the breast and ovary, but also other tissues. The RAD51 paralogs RAD51C and RAD51D were included in this group 10 years ago when germline variants were associated with non-BRCA1/2 familial ovarian cancer. Here, we have reviewed the landscape of RAD51C and RAD51D germline variants in cancer reported in the literature during the last decade, integrating this list with variants identified by in-house patient screening. A comprehensive catalog of 341 variants that have been classified applying ACMG/AMP criteria has been generated pinpointing the existence of recurrent variants in both genes. Recurrent variants have been extensively discussed compiling data on population frequencies and functional characterization if available, highlighting variants that have not been fully characterized yet to properly establish their pathogenicity. Finally, we have complemented this data with relevant information regarding the conservation of mutated residues among RAD51 paralogs and modeling of putative hotspot areas, which contributes to generating an exhaustive update on these two cancer predisposition genes.


Subject(s)
DNA-Binding Proteins , Genetic Predisposition to Disease , Ovarian Neoplasms , DNA-Binding Proteins/genetics , Female , Germ Cells , Germ-Line Mutation/genetics , Humans , Ovarian Neoplasms/genetics
14.
Sci Rep ; 11(1): 22948, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824355

ABSTRACT

Case-control studies have shown an association of BARD1 with hereditary breast and/or ovarian cancer (HBOC) predisposition. BARD1 alternatively spliced isoforms are abundant and some are highly expressed in different cancer types. In addition, a number of BARD1 germline pathogenic variants have been reported among HBOC patients. In previous reports, BARD1 c.1977A>G variant has been classified as pathogenic since it produces a frameshift transcript lacking exons 2 to 9. In the present study, we sought to validate the mRNA splicing results previously published and to contribute with new evidence to refine the classification of this substitution according to ACMG/AMP guidelines. The presence of the variant was screened in patients and controls. RT-PCR was performed in order to compare the transcriptional profiles of two variant carriers and ten non-carrier controls. In addition, allele-specific expression was assessed. No differences in variant frequency were detected between patients and controls. The RNA assay confirmed the presence of the shorter transcript lacking exons 2-9, but it was detected both in carriers and non-carriers. Furthermore, allelic imbalance was discarded and no significant differences in the proportion of full-length and shorter transcript were detected between carriers and controls. The shorter transcript detected corresponds to BARD1 isoform η, constituted by exons 1, 10 and 11. Our results support that this transcript is a constitutive splicing product rather than an aberrant transcript caused by BARD1 c.1977A>G variant, and for this reason this variant should be considered as likely benign following ACMG/AMP guidelines.


Subject(s)
Alternative Splicing , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Genetic Variation , Ovarian Neoplasms/genetics , Polymerase Chain Reaction , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Breast Neoplasms/enzymology , Case-Control Studies , Female , Genetic Predisposition to Disease , Heredity , Humans , Ovarian Neoplasms/enzymology , Risk Factors
15.
Genet Med ; 23(9): 1726-1737, 2021 09.
Article in English | MEDLINE | ID: mdl-34113011

ABSTRACT

PURPOSE: To evaluate the association between a previously published 313 variant-based breast cancer (BC) polygenic risk score (PRS313) and contralateral breast cancer (CBC) risk, in BRCA1 and BRCA2 pathogenic variant heterozygotes. METHODS: We included women of European ancestry with a prevalent first primary invasive BC (BRCA1 = 6,591 with 1,402 prevalent CBC cases; BRCA2 = 4,208 with 647 prevalent CBC cases) from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA), a large international retrospective series. Cox regression analysis was performed to assess the association between overall and ER-specific PRS313 and CBC risk. RESULTS: For BRCA1 heterozygotes the estrogen receptor (ER)-negative PRS313 showed the largest association with CBC risk, hazard ratio (HR) per SD = 1.12, 95% confidence interval (CI) (1.06-1.18), C-index = 0.53; for BRCA2 heterozygotes, this was the ER-positive PRS313, HR = 1.15, 95% CI (1.07-1.25), C-index = 0.57. Adjusting for family history, age at diagnosis, treatment, or pathological characteristics for the first BC did not change association effect sizes. For women developing first BC < age 40 years, the cumulative PRS313 5th and 95th percentile 10-year CBC risks were 22% and 32% for BRCA1 and 13% and 23% for BRCA2 heterozygotes, respectively. CONCLUSION: The PRS313 can be used to refine individual CBC risks for BRCA1/2 heterozygotes of European ancestry, however the PRS313 needs to be considered in the context of a multifactorial risk model to evaluate whether it might influence clinical decision-making.


Subject(s)
Breast Neoplasms , Adult , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Mutation , Retrospective Studies , Risk Factors
16.
Bioinformatics ; 37(22): 4227-4229, 2021 11 18.
Article in English | MEDLINE | ID: mdl-33983414

ABSTRACT

SUMMARY: Germline copy-number variants (CNVs) are relevant mutations for multiple genetics fields, such as the study of hereditary diseases. However, available benchmarks show that all next-generation sequencing (NGS) CNV calling tools produce false positives. We developed CNVfilteR, an R package that uses the single-nucleotide variant calls usually obtained in germline NGS pipelines to identify those false positives. The package can detect both false deletions and false duplications. We evaluated CNVfilteR performance on callsets generated by 13 CNV calling tools on three whole-genome sequencing and 541 panel samples, showing a decrease of up to 44.8% in false positives and consistent F1-score increase. Using CNVfilteR to detect false-positive calls can improve the overall performance of existing CNV calling pipelines. AVAILABILITY AND IMPLEMENTATION: CNVfilteR is released under Artistic-2.0 License. Source code and documentation are freely available at Bioconductor (http://www.bioconductor.org/packages/CNVfilteR). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
High-Throughput Nucleotide Sequencing , Software , Whole Genome Sequencing , Mutation , DNA Copy Number Variations
17.
Genes (Basel) ; 12(2)2021 01 23.
Article in English | MEDLINE | ID: mdl-33498765

ABSTRACT

Only a small fraction of hereditary breast and/or ovarian cancer (HBOC) cases are caused by germline variants in the high-penetrance breast cancer 1 and 2 genes (BRCA1 and BRCA2). BRCA1-associated ring domain 1 (BARD1), nuclear partner of BRCA1, has been suggested as a potential HBOC risk gene, although its prevalence and penetrance are variable according to populations and type of tumor. We aimed to investigate the prevalence of BARD1 truncating variants in a cohort of patients with clinical suspicion of HBOC. A comprehensive BARD1 screening by multigene panel analysis was performed in 4015 unrelated patients according to our regional guidelines for genetic testing in hereditary cancer. In addition, 51,202 Genome Aggregation Database (gnomAD) non-Finnish, non-cancer European individuals were used as a control population. In our patient cohort, we identified 19 patients with heterozygous BARD1 truncating variants (0.47%), whereas the frequency observed in the gnomAD controls was 0.12%. We found a statistically significant association of truncating BARD1 variants with overall risk (odds ratio (OR) = 3.78; CI = 2.10-6.48; p = 1.16 × 10-5). This association remained significant in the hereditary breast cancer (HBC) group (OR = 4.18; CI = 2.10-7.70; p = 5.45 × 10-5). Furthermore, deleterious BARD1 variants were enriched among triple-negative BC patients (OR = 5.40; CI = 1.77-18.15; p = 0.001) compared to other BC subtypes. Our results support the role of BARD1 as a moderate penetrance BC predisposing gene and highlight a stronger association with triple-negative tumors.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Triple Negative Breast Neoplasms/epidemiology , Triple Negative Breast Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Alleles , Biomarkers, Tumor , Cohort Studies , Female , Genetic Association Studies , Genetic Testing , Genotype , Germ-Line Mutation , Hereditary Breast and Ovarian Cancer Syndrome/epidemiology , Humans , Phenotype , Population Surveillance , Spain/epidemiology
18.
Clin Chem ; 67(3): 518-533, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33280026

ABSTRACT

BACKGROUND: Gene panel testing by massive parallel sequencing has increased the diagnostic yield but also the number of variants of uncertain significance. Clinical interpretation of genomic data requires expertise for each gene and disease. Heterozygous ATM pathogenic variants increase the risk of cancer, particularly breast cancer. For this reason, ATM is included in most hereditary cancer panels. It is a large gene, showing a high number of variants, most of them of uncertain significance. Hence, we initiated a collaborative effort to improve and standardize variant classification for the ATM gene. METHODS: Six independent laboratories collected information from 766 ATM variant carriers harboring 283 different variants. Data were submitted in a consensus template form, variant nomenclature and clinical information were curated, and monthly team conferences were established to review and adapt American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria to ATM, which were used to classify 50 representative variants. RESULTS: Amid 283 different variants, 99 appeared more than once, 35 had differences in classification among laboratories. Refinement of ACMG/AMP criteria to ATM involved specification for twenty-one criteria and adjustment of strength for fourteen others. Afterwards, 50 variants carried by 254 index cases were classified with the established framework resulting in a consensus classification for all of them and a reduction in the number of variants of uncertain significance from 58% to 42%. CONCLUSIONS: Our results highlight the relevance of data sharing and data curation by multidisciplinary experts to achieve improved variant classification that will eventually improve clinical management.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Genetic Predisposition to Disease , Neoplasms/genetics , Female , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Humans , Male
19.
Eur J Cancer ; 141: 1-8, 2020 12.
Article in English | MEDLINE | ID: mdl-33125943

ABSTRACT

BACKGROUND: Hereditary breast and ovarian cancer syndrome (HBOC) is an inherited disorder with an increased risk of breast cancer (BC) and ovarian cancers (OC). Mutations in BRCA1-BRCA2 explains less than a half of cases. In the last decade several genes with different penetrance have been associated with an increased risk of BC or OC. A recurrent heterozygous ERCC3 truncating mutation increases the risk for breast cancer in patients with Ashkenazi Jewish ancestry. Our study aimed to investigate the role of ERCC3 truncating variants in a cohort of patients with suspicion of HBOC. PATIENTS AND METHODS: ERCC3 screening by multigene-panel analysis in 1311 unrelated patients after our regional consensus for genetic testing in hereditary cancer was done. In addition, 453 Spanish cancer-free individuals and 51,343 GnomAD non-Finnish, non-cancer European individuals were used as control populations. RESULTS: We identified 13 patients with heterozygous ERCC3 truncating variants (0.99%). Five of them also carried a mutation in a high- /moderate-penetrance HBOC gene (BRCA1, BRCA2, CHEK2, and TP53) being Multilocus Inherited Neoplasia Alleles syndrome (MINAS) patients. The frequency in 453 Spanish controls was of 0.22%; similar to that observed in 51,343 non-Finnish European GnomAD population (0.24%). We found an almost statistically significant association of truncating ERCC3 variants with BC (odds ratio [OR] = 2.25, confidence interval [CI] = 0.6-5.93, P = 0.11), and we observed for the first time a significant association with OC (OR = 4.74, CI = 1-14.34, P = 0.028), that holds even after removing MINAS cases. CONCLUSIONS: To our knowledge, this is the largest HBOC series comprehensively analysed for ERCC3 mutations, and the first study identifying ERCC3 as a cancer risk for OC.


Subject(s)
DNA Helicases/genetics , DNA-Binding Proteins/genetics , Genetic Predisposition to Disease/genetics , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Adult , Female , Humans , Middle Aged , Pedigree
20.
J Mol Diagn ; 22(12): 1453-1468, 2020 12.
Article in English | MEDLINE | ID: mdl-33011440

ABSTRACT

RNA analyses are a potent tool to identify spliceogenic effects of DNA variants, although they are time-consuming and cannot always be performed. We present splicing assays of 20 variants that represent a variety of mutation types in 10 hereditary cancer genes and attempt to incorporate these results into American College of Medical Genetics and Genomics (ACMG) classification guidelines. Sixteen single-nucleotide variants, 3 exon duplications, and 1 single-exon deletion were selected and prioritized by in silico algorithms. RNA was extracted from short-term lymphocyte cultures to perform RT-PCR and Sanger sequencing, and allele-specific expression was assessed whenever possible. Aberrant transcripts were detected in 14 variants (70%). Variant interpretation was difficult, especially comparing old classification standards to generic ACMG guidelines and a proposal was devised to weigh functional analyses at RNA level. According to the ACMG guidelines, only 12 variants were reclassified as pathogenic/likely pathogenic because the other two variants did not gather enough evidence. This study highlights the importance of RNA studies to improve variant classification. However, it also indicates the challenge of incorporating these results into generic ACMG guidelines and the need to refine these criteria gene specifically. Nevertheless, 60% of variants were reclassified, thus improving genetic counseling and surveillance for carriers of these variants.


Subject(s)
Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Neoplastic Syndromes, Hereditary/genetics , Practice Guidelines as Topic/standards , RNA Splicing/genetics , RNA, Messenger/genetics , Sequence Analysis, RNA/methods , Adult , Aged , Alleles , Cohort Studies , Computer Simulation , DNA Copy Number Variations , Exons , Female , Genetic Predisposition to Disease/genetics , Genome, Human , Genomics/methods , Humans , Introns , Male , Middle Aged , Neoplastic Syndromes, Hereditary/blood , Polymorphism, Single Nucleotide , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...