Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Yeast ; 39(6-7): 363-400, 2022 06.
Article in English | MEDLINE | ID: mdl-35715939

ABSTRACT

The plant phyllosphere is one of the largest sources of microorganisms, including yeasts. In bromeliads, the knowledge of yeasts is dispersed and still incipient. To understand the extent of our knowledge of the subject, this review proposes to compile and synthesize existing knowledge, elucidating possible patterns, biotechnological and taxonomic potentials, bringing to light new knowledge, and identifying information gaps. For such, we systematically review scientific production on yeasts in bromeliads using various databases. The results indicated that the plant compartments flowers, fruits, leaves, and water tank (phytotelma) have been studied when focusing on the yeast community in the bromeliad phyllosphere. More than 180 species of yeasts and yeast-like fungi were recorded from the phyllosphere, 70% were exclusively found in one of these four compartments and only 2% were shared among all. In addition, most of the community had a low frequency of occurrence, and approximately half of the species had a single record. Variables such as bromeliad subfamilies and functional types, as well as plant compartments, were statistically significant, though inconclusive and with low explanatory power. At least 50 yeast species with some biotechnological potentials have been isolated from bromeliads. More than 90% of these species were able to produce extracellular enzymes. In addition, other biotechnological applications have also been recorded. Moreover, new species have been described, though yeasts were only exploited in approximately 1% of the existing bromeliads species, which highlights that there is still much to be explored. Nevertheless, it appears that we are still far from recovering the completeness of the diversity of yeasts in this host. Furthermore, bromeliads proved to be a good ecological model for prospecting new yeasts and for studies on the interaction between plants and yeasts. In addition, the yeast community diverged among plant compartments, establishing bromeliads as a microbiologically complex and heterogeneous mosaic.


Subject(s)
Bromeliaceae , Bromeliaceae/microbiology , Flowers , Plants , Water , Yeasts
2.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Article in English | MEDLINE | ID: mdl-34762580

ABSTRACT

Four yeast isolates with an affinity to the genus Wickerhamiella were obtained from beach sand, a marine zoanthid and a tree exudate at different localities in Brazil. Two other isolates with almost identical ITS and D1/D2 sequences of the large subunit rRNA gene were isolated from the small intestine of cattle and a grease trap in Thailand. These isolates represent a novel species phylogenetically related to Wickerhamiella verensis, Wickerhamiella osmotolerans, Wickerhamiella tropicalis, Wickerhamiella sorbophila and Wickerhamiella infanticola. The novel species differs by 15-30 nucleotide differences from these species in the D1/D2 sequences. The name Wickerhamiella martinezcruziae f.a., sp. nov. is proposed. The holotype of Wickerhamiella martinezcruziae sp. nov. is CBS 16104T. The MycoBank number is MB 839328.


Subject(s)
Phylogeny , Saccharomycetales , Animals , Base Composition , Brazil , Cattle/microbiology , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Intestine, Small/microbiology , Mycological Typing Techniques , Plant Exudates , RNA, Ribosomal, 16S/genetics , Saccharomycetales/classification , Saccharomycetales/isolation & purification , Sand/microbiology , Sequence Analysis, DNA , Thailand , Tropical Climate
3.
J Basic Microbiol ; 60(2): 103-111, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31696957

ABSTRACT

Fungi are known to form associations with various marine organisms and substrata such as sponges and corals, both as potential symbionts or pathogens. These microorganisms occupy an ecological niche that has recently attracted great attention due to their potential in either ecological or pharmaceutical advances. However, the interaction between marine invertebrates and fungi is still poorly understood, including how they are affected by anthropogenic actions. Here, we identified 89 fungal isolates through sequencing of the ITS rDNA region obtained from the various sponge and coral species collected at two northeast Brazilian reefs. We found 43 species of fungi from 16 genera, all belonging to phylum Ascomycota. The sponges and coral shared four genera: Aspergillus, Penicillium, Trichoderma, and Cladosporium, all commonly found in terrestrial habitats and associated with marine invertebrates. We observed some unusual species in relation to the marine environment, such as Clonostachys rosea and Neopestalotiopsis clavispora, most of them related to plants, either as saprophytic or pathogenic, suggesting that these species were transported from the surrounding terrestrial environment to the reefs. In addition, some isolates represent possible undescribed species, reinforcing the importance of studying the marine environment in relation to its ecological and biotechnological importance.


Subject(s)
Anthozoa/microbiology , Biodiversity , Fungi/classification , Host Microbial Interactions , Porifera/microbiology , Animals , Brazil , Coral Reefs , DNA, Ribosomal/genetics , Hydrogen-Ion Concentration , Oceans and Seas , Phylogeny , Sequence Analysis, DNA
4.
Int J Syst Evol Microbiol ; 67(6): 1752-1757, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28613149

ABSTRACT

Yeast surveys associated with different bromeliads in north-eastern Brazil led to the proposal of two novel yeast species, Carlosrosaea hohenbergiae sp. nov. and Carlosrosaea aechmeae sp. nov., belonging to the Tremellales clade (Agaricomycotina, Basidiomycota). Analysis of the sequences of the internal transcribed spacer (ITS) region and D1/D2 domain of the LSU rRNA gene suggested an affinity with a phylogenetic lineage that includes recently reclassified Carlosrosaeavrieseae. Six isolates of the novel species were obtained from different bromeliad species collected in three Atlantic Forest fragments in Alagoas state, Brazil. Ca. hohenbergiae sp. nov. differs by 69 and 12 nucleotide substitutions in the ITS and D1/D2 domain, respectively, from Ca. vrieseae. The type strain is UFMG-CM-Y405T (=BSB 34T=CBS 14563T), Mycobank 819227. Ca. aechmeae sp. nov. is represented by one strain isolated from Aechmea constantinii leaves. Ca. aechmeae sp. nov. differs from the related species Ca. hohenbergiae and Ca. vrieseae by 36 and 65 nucleotide substitutions, respectively, in the ITS region and by 12 and 15 nucleotide substitutions in the D1/D2 domain, respectively. The type strain of Ca. aechmeae sp. nov. is UFMG-CM-Y6095T (=BM 94T=CBS 14578), Mycobank 819228.


Subject(s)
Basidiomycota/classification , Bromeliaceae/microbiology , Phylogeny , Base Composition , Basidiomycota/genetics , Basidiomycota/isolation & purification , Brazil , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Mycological Typing Techniques , Plant Leaves/microbiology , Sequence Analysis, DNA
5.
Int J Syst Evol Microbiol ; 66(4): 1799-1806, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26827928

ABSTRACT

Two yeast species, Papiliotrema leoncinii sp. nov. and Papiliotrema miconiae sp. nov., in the family Rhynchogastremataceae of the Tremellales are proposed. The two species are related to six species of the genus Papiliotrema: Papiliotrema aureus, P. flavescens, P. terrestris, P. baii, P. ruineniae and P. wisconsinensis. The novel species are proposed on the basis of the sequence-based phylogenetic species concept with analysis of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region. A total of 16 strains of Papiliotrema leoncinii sp. nov. were obtained from freshwater and bromeliad leaves collected in Brazil. Papiliotrema leoncinii sp. nov. differs by 11, 12, 16, 14, 11 and 13 substitutions in the D1/D2 domain from the related species P. aureus, P. flavescens, P. terrestris, P. baii, P. ruineniae and P. wisconsinensis, respectively. Differences of 11 substitutions and 21 or more substitutions in ITS regions were found when the sequences of Papiliotrema leoncinii sp. nov. were compared with P. wisconsinensis and its closest relatives. The type strain of Papiliotrema leoncinii sp. nov. is UFMG-CM-Y374T (=CBS 13918T). Papiliotrema miconiae sp. nov. is represented by two strains isolated from a flower of Miconia sp. and a water sample in Brazil. Papiliotrema miconiae sp. nov. differs from the related species P. aureus and P. ruineniae by eight substitutions, from P. flavescens and P. terrestris by 11 substitutions, from P. baii by 10 substitutions and from P. wisconsinensis by 6 substitutions in the D1/D2 domain, and by 7 substitutions from P. wisconsinensis and more than 19 substitutions in the ITS region from its closest relatives. The type strain of Papiliotrema miconiae sp. nov. is CBS 8358T (ML 3666T=DBVPG-4492T). The MycoBank numbers for Papiliotrema leoncinii sp. nov. and Papiliotrema miconiae sp. nov. are MB 813594 and MB 814882, respectively.


Subject(s)
Basidiomycota/classification , Melastomataceae/microbiology , Phylogeny , Basidiomycota/genetics , Basidiomycota/isolation & purification , Brazil , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Flowers/microbiology , Genes, rRNA , Molecular Sequence Data , Mycological Typing Techniques , Plant Leaves/microbiology , RNA, Ribosomal/genetics , Sequence Analysis, DNA
6.
Int J Syst Evol Microbiol ; 65(8): 2466-2471, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25911536

ABSTRACT

Two independent surveys of yeasts associated with different bromeliads in different Brazilian regions led to the proposal of a novel yeast species, Bullera vrieseae sp. nov., belonging to the Tremellales clade (Agaricomycotina, Basidiomycota). Analysis of the sequences in the internal transcribed spacer (ITS) region and D1/D2 domain of the LSU rRNA gene suggested affinity to a phylogenetic lineage that includes Bullera miyagiana and Bullera sakaeratica. Six isolates of the novel species were obtained from different bromeliads and regions in Brazil. Sequence analysis of the D1/D2 domains of the large subunit of the rRNA gene showed that the novel species differs from B. miyagiana and B. sakaeratica by 85 and 64 nt substitutions, respectively and by more than 75 nt substitutions in the ITS region. Phenotypically, Bullera vrieseae sp. nov. can be distinguished from both species based on the assimilation of meso-erythritol, which was negative for B. vrieseae sp. nov. but positive for the others, assimilation of d-glucosamine, which was positive for B. vrieseae sp. nov. but negative for B. miyagiana and of l-sorbose, which was negative for B. vrieseae sp. nov. but positive for B. sakaeratica. The novel species Bullera vrieseae sp. nov. is proposed to accommodate these isolates. The type strain of Bullera vrieseae sp. nov. is UFMG-CM-Y379T (BRO443T; ex-type CBS 13870T).


Subject(s)
Basidiomycota/classification , Bromeliaceae/microbiology , Phylogeny , Basidiomycota/genetics , Basidiomycota/isolation & purification , Brazil , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Molecular Sequence Data , Mycological Typing Techniques , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...