Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 39(9)2023 09 02.
Article in English | MEDLINE | ID: mdl-37682115

ABSTRACT

MOTIVATION: The maturation of systems immunology methodologies requires novel and transparent computational frameworks capable of integrating diverse data modalities in a reproducible manner. RESULTS: Here, we present the ePlatypus computational immunology ecosystem for immunogenomics data analysis, with a focus on adaptive immune repertoires and single-cell sequencing. ePlatypus is an open-source web-based platform and provides programming tutorials and an integrative database that helps elucidate signatures of B and T cell clonal selection. Furthermore, the ecosystem links novel and established bioinformatics pipelines relevant for single-cell immune repertoires and other aspects of computational immunology such as predicting ligand-receptor interactions, structural modeling, simulations, machine learning, graph theory, pseudotime, spatial transcriptomics, and phylogenetics. The ePlatypus ecosystem helps extract deeper insight in computational immunology and immunogenomics and promote open science. AVAILABILITY AND IMPLEMENTATION: Platypus code used in this manuscript can be found at github.com/alexyermanos/Platypus.


Subject(s)
Ecosystem , Platypus , Animals , Computational Biology/methods , Phylogeny , Machine Learning , Software
2.
Chem Commun (Camb) ; 57(72): 9068-9071, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34498652

ABSTRACT

Inspired by the boom of new artificial metalloenzymes, we developed an Fmoc-protected histidinium salt (Hum) as N-heterocyclic carbene precursor. Hum was placed via solid-phase peptide synthesis into short 7-mer peptides. Upon iridation, the metallo-peptidic construct displayed activity in catalytic hydrogenation that outperforms small molecule analogues and which is dependent on the peptide sequence, a typical feature of metalloenzymes.


Subject(s)
Amino Acids/metabolism , Methane/analogs & derivatives , Oxidoreductases/metabolism , Peptides/metabolism , Amino Acids/chemistry , Methane/chemistry , Methane/metabolism , Molecular Structure , Oxidoreductases/chemistry , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...