Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 125(48): 13158-13167, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34812629

ABSTRACT

Numerous health benefits are associated with omega-3 polyunsaturated fatty acids (n-3 PUFA) consumed in fish oils. An understanding of the mechanism remains elusive. The plasma membrane as a site of action is the focus in this study. With large-scale all-atom MD simulations run on a model membrane (1050 lipid molecules), we observed the evolution over time (6 µs) of a circular (raft-like) domain composed of N-palmitoylsphingomyelin (PSM) and cholesterol embedded into a surrounding (non-raft) patch composed of polyunsaturated 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) (1:1:1 mol). A supervised machine learning algorithm was developed to characterize the migration of each lipid based on molecular conformation and the local environment. PDPC molecules were seen to infiltrate the ordered raft-like domain in a small amount, while a small concentration of PSM and cholesterol molecules was seen to migrate into the disordered non-raft region. Enclosing the raft-like domain, a narrow (∼2 nm in width) interfacial zone composed of PDPC, PSM, and cholesterol that buffers the substantial difference in order (ΔSCD ≈ 0.12) between raft-like and non-raft environments was seen to form. Our results suggest that n-3 PUFA regulate the architecture of lipid rafts enriched in sphingolipids and cholesterol with a minimal effect on order within their interior in membranes.


Subject(s)
Fatty Acids, Omega-3 , Phospholipids , Membrane Microdomains , Molecular Dynamics Simulation , Supervised Machine Learning
2.
Biochim Biophys Acta Biomembr ; 1860(5): 1125-1134, 2018 May.
Article in English | MEDLINE | ID: mdl-29305832

ABSTRACT

Eicosapentaenoic (EPA, 20:5), docosahexaenoic (DHA, 22:6) and docosapentaenoic (DPA, 22:5) acids are omega-3 polyunsaturated fatty acids (n-3 PUFA) obtained from dietary consumption of fish oils that potentially alleviate the symptoms of a range of chronic diseases. We focus here on the plasma membrane as a site of action and investigate how they affect molecular organization when taken up into a phospholipid. All atom MD simulations were performed to compare 1-stearoyl-2-eicosapentaenoylphosphatylcholine (EPA-PC, 18:0-20:5PC), 1-stearoyl-2-docosahexaenoylphosphatylcholine (DHA-PC, 18:0-22:6PC), 1-stearoyl-2-docosapentaenoylphosphatylcholine (DPA-PC, 18:0-22:5PC) and, as a monounsaturated control, 1-stearoyl-2-oleoylphosphatidylcholine (OA-PC, 18:0-18:1PC) bilayers. They were run in the absence and presence of 20mol% cholesterol. Multiple double bonds confer high disorder on all three n-3 PUFA. The different number of double bonds and chain length for each n-3 PUFA moderates the reduction in membrane order exerted (compared to OA-PC, S¯CD=0.152). EPA-PC (S¯CD=0.131) is most disordered, while DPA-PC (S¯CD=0.140) is least disordered. DHA-PC (S¯CD=0.139) is, within uncertainty, the same as DPA-PC. Following the addition of cholesterol, order in EPA-PC (S¯CD=0.169), DHA-PC (S¯CD=0.178) and DPA-PC (S¯CD=0.182) is increased less than in OA-PC (S¯CD=0.214). The high disorder of n-3 PUFA is responsible, preventing the n-3 PUFA-containing phospholipids from packing as close to the rigid sterol as the monounsaturated control. Our findings establish that EPA, DHA and DPA are not equivalent in their interactions within membranes, which possibly contributes to differences in clinical efficacy.


Subject(s)
Cell Membrane/metabolism , Docosahexaenoic Acids/pharmacokinetics , Eicosapentaenoic Acid/pharmacokinetics , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/pharmacokinetics , Fatty Acids, Unsaturated/pharmacokinetics , Cell Membrane/chemistry , Cholesterol/metabolism , Docosahexaenoic Acids/chemistry , Eicosapentaenoic Acid/chemistry , Fatty Acids, Omega-3/classification , Fatty Acids, Omega-3/metabolism , Fatty Acids, Unsaturated/chemistry , Membrane Fluidity , Models, Molecular , Molecular Conformation , Molecular Dynamics Simulation
3.
Biophys J ; 109(8): 1608-18, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26488652

ABSTRACT

The presumptive function for alpha-tocopherol (αtoc) in membranes is to protect polyunsaturated lipids against oxidation. Although the chemistry of the process is well established, the role played by molecular structure that we address here with atomistic molecular-dynamics simulations remains controversial. The simulations were run in the constant particle NPT ensemble on hydrated lipid bilayers composed of SDPC (1-stearoyl-2-docosahexaenoylphosphatidylcholine, 18:0-22:6PC) and SOPC (1-stearoyl-2-oleoylphosphatidylcholine, 18:0-18:1PC) in the presence of 20 mol % αtoc at 37°C. SDPC with SA (stearic acid) for the sn-1 chain and DHA (docosahexaenoic acid) for the sn-2 chain is representative of polyunsaturated phospholipids, while SOPC with OA (oleic acid) substituted for the sn-2 chain serves as a monounsaturated control. Solid-state (2)H nuclear magnetic resonance and neutron diffraction experiments provide validation. The simulations demonstrate that high disorder enhances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, whereby they encounter the chromanol group on αtoc molecules. This behavior is reflected in the van der Waals energy of interaction between αtoc and acyl chains, and illustrated by density maps of distribution for acyl chains around αtoc molecules that were constructed. An ability to more easily penetrate deep into the bilayer is another attribute conferred upon the chromanol group in αtoc by the high disorder possessed by DHA. By examining the trajectory of single molecules, we found that αtoc flip-flops across the SDPC bilayer on a submicrosecond timescale that is an order-of-magnitude greater than in SOPC. Our results reveal mechanisms by which the sacrificial hydroxyl group on the chromanol group can trap lipid peroxyl radicals within the interior and near the surface of a polyunsaturated membrane. At the same time, water-soluble reducing agents that regenerate αtoc can access the chromanol group when it locates at the surface.


Subject(s)
Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Oxidation-Reduction , Phospholipids/chemistry , alpha-Tocopherol/chemistry , Lipid Peroxidation , Magnetic Resonance Spectroscopy , Neutron Diffraction
4.
Biophys J ; 107(1): 114-25, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24988346

ABSTRACT

Estradiol (E2) and E2 oleate associate with high-density lipoproteins (HDLs). Their orientation in HDLs is unknown. We studied the orientation of E2 and E2 oleate in membranes and reconstituted HDLs, finding that E2 and E2 oleate are membrane-associated and highly mobile. Our combination of NMR measurements, molecular dynamics simulation, and analytic theory identifies three major conformations where the long axis of E2 assumes a parallel, perpendicular, or antiparallel orientation relative to the membrane's z-direction. The perpendicular orientation is preferred, and furthermore, in this orientation, E2 strongly favors a particular roll angle, facing the membrane with carbons 6, 7, 15, and 16, whereas carbons 1, 2, 11, and 12 point toward the aqueous phase. In contrast, the long axis of E2 oleate is almost exclusively oriented at an angle of ∼60° to the z-direction. In such an orientation, the oleoyl chain is firmly inserted into the membrane. Thus, both E2 and E2 oleate have a preference for interface localization in the membrane. These orientations were also found in HDL discs, suggesting that only lipid-E2 interactions determine the localization of the molecule. The structural mapping of E2 and E2 oleate may provide a design platform for specific E2-HDL-targeted pharmacological therapies.


Subject(s)
Estradiol/chemistry , Lipoproteins, HDL/chemistry , Liposomes/chemistry , Molecular Dynamics Simulation , Oleic Acid/chemistry
5.
Biochemistry ; 53(2): 376-85, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24328554

ABSTRACT

Rhodopsin, the mammalian dim-light receptor, is one of the best-characterized G-protein-coupled receptors, a pharmaceutically important class of membrane proteins that has garnered a great deal of attention because of the recent availability of structural information. Yet the mechanism of rhodopsin activation is not fully understood. Here, we use microsecond-scale all-atom molecular dynamics simulations, validated by solid-state (2)H nuclear magnetic resonance spectroscopy, to understand the transition between the dark and metarhodopsin I (Meta I) states. Our analysis of these simulations reveals striking differences in ligand flexibility between the two states. Retinal is much more dynamic in Meta I, adopting an elongated conformation similar to that seen in the recent activelike crystal structures. Surprisingly, this elongation corresponds to both a dramatic influx of bulk water into the hydrophobic core of the protein and a concerted transition in the highly conserved Trp265(6.48) residue. In addition, enhanced ligand flexibility upon light activation provides an explanation for the different retinal orientations observed in X-ray crystal structures of active rhodopsin.


Subject(s)
Retinaldehyde/chemistry , Rhodopsin/chemistry , Crystallography, X-Ray , Ligands , Models, Molecular , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Retinaldehyde/metabolism , Rhodopsin/metabolism , Time Factors , Water/chemistry , Water/metabolism
6.
J Am Chem Soc ; 135(25): 9391-8, 2013 Jun 26.
Article in English | MEDLINE | ID: mdl-23701524

ABSTRACT

We have explored the relationship between conformational energetics and the protonation state of the Schiff base in retinal, the covalently bound ligand responsible for activating the G protein-coupled receptor rhodopsin, using quantum chemical calculations. Guided by experimental structural determinations and large-scale molecular simulations on this system, we examined rotation about each bond in the retinal polyene chain, for both the protonated and deprotonated states that represent the dark and photoactivated states, respectively. Particular attention was paid to the torsional degrees of freedom that determine the shape of the molecule, and hence its interactions with the protein binding pocket. While most torsional degrees of freedom in retinal are characterized by large energetic barriers that minimize structural fluctuations under physiological temperatures, the C6-C7 dihedral defining the relative orientation of the ß-ionone ring to the polyene chain has both modest barrier heights and a torsional energy surface that changes dramatically with protonation of the Schiff base. This surprising coupling between conformational degrees of freedom and protonation state is further quantified by calculations of the pKa as a function of the C6-C7 dihedral angle. Notably, pKa shifts of greater than two units arise from torsional fluctuations observed in molecular dynamics simulations of the full ligand-protein-membrane system. It follows that fluctuations in the protonation state of the Schiff base occur prior to forming the activated MII state. These new results shed light on important mechanistic aspects of retinal conformational changes that are involved in the activation of rhodopsin in the visual process.


Subject(s)
Retinaldehyde/chemistry , Rhodopsin/chemistry , Schiff Bases/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Molecular Conformation , Molecular Structure , Protons , Quantum Theory
7.
J Am Chem Soc ; 134(9): 4324-31, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22280374

ABSTRACT

We present a detailed analysis of the behavior of the highly flexible post-translational lipid modifications of rhodopsin from multiple-microsecond all-atom molecular dynamics simulations. Rhodopsin was studied in a realistic membrane environment that includes cholesterol, as well as saturated and polyunsaturated lipids with phosphocholine and phosphoethanolamine headgroups. The simulation reveals striking differences between the palmitoylations at Cys322 and Cys323 as well as between the palmitoyl chains and the neighboring lipids. Notably the palmitoyl group at Cys322 shows considerably greater contact with helix H1 of rhodopsin, yielding frequent chain upturns with longer reorientational correlation times, and relatively low order parameters. While the palmitoylation at Cys323 makes fewer protein contacts and has increased order compared to Cys322, it nevertheless exhibits greater flexibility with smaller order parameters than the stearoyl chains of the surrounding lipids. The dynamical structure of the palmitoylations-as well as their extensive fluctuations-suggests a complex function for the post-translational modifications in rhodopsin and potentially other G protein-coupled receptors, going beyond their role as membrane anchoring elements. Rather, we propose that the palmitoylation at Cys323 has a potential role as a lipid anchor, whereas the palmitoyl-protein interaction observed for Cys322 suggests a more specific interaction that affects the stability of the dark state of rhodopsin.


Subject(s)
Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Palmitic Acids/chemistry , Rhodopsin/chemistry , Cysteine/chemistry , Cysteine/metabolism , Lipid Bilayers/metabolism , Models, Molecular , Palmitic Acids/metabolism , Protein Processing, Post-Translational , Rhodopsin/metabolism
8.
Biochim Biophys Acta ; 1818(2): 219-24, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21872568

ABSTRACT

The Ras family of proteins plays crucial roles in a variety of cell signaling networks where they have the function of a molecular switch. Their particular medical relevance arises from mutations in these proteins that are implicated in ~30% of human cancers. The various Ras proteins exhibit a high degree of homology in their soluble domains but extremely high variability in the membrane anchoring regions that are crucial for protein function and are the focus of this study. We have employed replica exchange molecular dynamics computer simulations to study a doubly lipidated heptapeptide, corresponding to the C-terminus of the human N-Ras protein, incorporated into a dimyristoylphosphatidylcholine lipid bilayer. This same system has previously been investigated experimentally utilizing a number of techniques, including neutron scattering. Here we present results of well converged simulations that describe the subtle changes in scattering density in terms of the location of the peptide and its lipid modifications and in terms of changes in phospholipid density arising from the incorporation of the peptide into the membrane bilayer. The detailed picture that emerges from the combination of experimental and computational data exemplifies the power of combining isotopic substitution neutron scattering with atomistic molecular dynamics simulation. This article is part of a Special Issue entitled: Membrane protein structure and function.


Subject(s)
Molecular Dynamics Simulation , ras Proteins/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Protein Binding , ras Proteins/metabolism
9.
Biochim Biophys Acta ; 1818(2): 241-51, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21851809

ABSTRACT

Rhodopsin has served as the primary model for studying G protein-coupled receptors (GPCRs)-the largest group in the human genome, and consequently a primary target for pharmaceutical development. Understanding the functions and activation mechanisms of GPCRs has proven to be extraordinarily difficult, as they are part of a complex signaling cascade and reside within the cell membrane. Although X-ray crystallography has recently solved several GPCR structures that may resemble the activated conformation, the dynamics and mechanism of rhodopsin activation continue to remain elusive. Notably solid-state ((2))H NMR spectroscopy provides key information pertinent to how local dynamics of the retinal ligand change during rhodopsin activation. When combined with molecular mechanics simulations of proteolipid membranes, a new paradigm for the rhodopsin activation process emerges. Experiment and simulation both suggest that retinal isomerization initiates the rhodopsin photocascade to yield not a single activated structure, but rather an ensemble of activated conformational states. This article is part of a Special Issue entitled: Membrane protein structure and function.


Subject(s)
Molecular Dynamics Simulation , Rhodopsin/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Humans , Magnetic Resonance Spectroscopy , Protein Conformation , Rhodopsin/metabolism
10.
J Membr Biol ; 245(1): 23-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22159954

ABSTRACT

The preferred conformations of the glycerol region of a phospholipid have been explored using replica exchange molecular dynamics (MD) simulations and compared with the results of standard MD approaches and with experiment. We found that due to isomerization rates in key torsions that are slow on the timescale of atomistic MD simulations, standard MD is not able to produce accurate equilibrium conformer distributions from reasonable trajectory lengths (e.g., on the 100 ns) timescale. Replica exchange MD, however, results in quite efficient sampling due to the rapid increase in isomerization rate with temperature. The equilibrium distributions obtained from replica exchange MD have been compared with the results of experimental nuclear magnetic resonance observations. This comparison suggests that the sampling approach demonstrated here is a valuable tool that can be used in evaluating force fields for molecular simulation of lipids.


Subject(s)
Glycerol/chemistry , Molecular Dynamics Simulation , Phospholipids/chemistry , Carbohydrate Conformation , Isomerism , Software , Thermodynamics
11.
Biophys J ; 101(3): L17-9, 2011 Aug 03.
Article in English | MEDLINE | ID: mdl-21806916

ABSTRACT

We have performed quantum mechanical calculations for retinal model compounds to establish the rotational energy barriers for the C5-, C9-, and C13-methyl groups known to play an essential role in rhodopsin activation. Intraretinal steric interactions as well as electronic effects lower the rotational barriers of both the C9- and C13-methyl groups, consistent with experimental (2)H NMR data. Each retinal methyl group has a unique rotational behavior which must be treated individually. These results are highly relevant for the parameterization of molecular mechanics force fields which form the basis of molecular dynamics simulations of retinal proteins such as rhodopsin.


Subject(s)
Electrons , Quantum Theory , Retinaldehyde/chemistry , Models, Molecular , Molecular Conformation , Stereoisomerism , Thermodynamics
12.
J Phys Chem B ; 114(35): 11474-83, 2010 Sep 09.
Article in English | MEDLINE | ID: mdl-20707331

ABSTRACT

The impact that the position of double bonds has upon the properties of membranes is investigated using solid-state (2)H NMR and MD simulations to compare positional isomers of 1-palmitoyl-2-octadecenoylphosphatidylcholine (16:0-18:1PC) bilayers that are otherwise identical apart from the location of a single cis double bond at the Delta(6), Delta(9), Delta(12), or Delta(15) position in the 18:1 sn-2 chain. Moment analysis of (2)H NMR spectra recorded for isomers perdeuterated in the 16:0 sn-1 chain reveals that average order parameters S(CD) change by more than 35% and that the temperature for chain melting T(m) varies by 40 degrees C. At equal temperature, the S(CD) values exhibit a minimum, as do T(m) values, when the double bond is in the middle of the 18:1 sn-2 chain and increase as it is shifted toward each end. Order parameter profiles generated from depaked ("dePaked") spectra for the 16:0 sn-1 chain all possess the same shape with a characteristic "plateau" region of slowly decreasing order in the upper portion before progressively decreasing more in the lower portion. The NMR results are interpreted on the basis of MD simulation results obtained on each of the four systems. The simulations support the idea that the order parameter changes reflect differences in molecular surface areas, and furthermore that the molecular areas are a function of the strength of the acyl chain attractions.


Subject(s)
Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Phospholipids/chemistry , Isomerism , Magnetic Resonance Spectroscopy , Transition Temperature
13.
Biochim Biophys Acta ; 1798(2): 275-85, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19819220

ABSTRACT

The lipid modified human N-Ras protein, implicated in human cancer development, is of particular interest due to its membrane anchor that determines the activity and subcellular location of the protein. Previous solid-state NMR investigations indicated that this membrane anchor is highly dynamic, which may be indicative of backbone conformational flexibility. This article aims to address if a dynamic exchange between three structural models exist that had been determined previously. We applied a combination of solid-state nuclear magnetic resonance (NMR) methods and replica exchange molecular dynamics (MD) simulations using a Ras peptide that represents the terminal seven amino acids of the human N-Ras protein. Analysis of correlations between the conformations of individual amino acids revealed that Cys 181 and Met 182 undergo collective conformational exchange. Two major structures constituting about 60% of all conformations could be identified. The two conformations found in the simulation are in rapid exchange, which gives rise to low backbone order parameters and nuclear spin relaxation as measured by experimental NMR methods. These parameters were also determined from two 300 ns conventional MD simulations, providing very good agreement with the experimental data.


Subject(s)
Lipids/chemistry , Models, Molecular , Peptides/chemistry , Protein Processing, Post-Translational , Proto-Oncogene Proteins p21(ras)/chemistry , Computer Simulation , Humans , Peptides/metabolism , Protein Structure, Secondary/physiology , Protein Structure, Tertiary/physiology , Proto-Oncogene Proteins p21(ras)/metabolism , Structure-Activity Relationship
14.
J Med Chem ; 52(22): 7157-62, 2009 Nov 26.
Article in English | MEDLINE | ID: mdl-19883084

ABSTRACT

The molecular mechanism by which HIV-1 Gag proteins are targeted and transported to the plasma membrane after ribosomal synthesis is unknown. In this work, we investigated the potential interaction of p6 and Vpr with model membranes and have determined their binding constants. Plasmon waveguide resonance (PWR) experiments showed that p6 strongly interacts with membranes (K(d) approximately 40 nM), which may help explaining in part why Gag is targeted to and assembles into membranes by coating itself with lipids. Moreover, a substantial increased affinity of Vpr for p6 was observed while in a membrane environment. In order to further investigate the molecular properties behind the high affinity to model membranes, molecular dynamics simulations were carried out for p6 with a dodecylphosphocholine (DPC) micelle. The results indicate an integration route model for Vpr into virions and may help explain why previous reports failed to detect p6 in virion core preparations.


Subject(s)
Cell Membrane/metabolism , Gene Products, vpr/metabolism , HIV-1 , Lipid Bilayers/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Sequence , Calorimetry, Differential Scanning , Cell Membrane/chemistry , Dimyristoylphosphatidylcholine/chemistry , Dimyristoylphosphatidylcholine/metabolism , Lipid Bilayers/chemistry , Micelles , Molecular Conformation , Molecular Dynamics Simulation , Molecular Sequence Data , Ovum , Phase Transition , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Phosphorylcholine/metabolism , Protein Binding , gag Gene Products, Human Immunodeficiency Virus/chemistry
15.
Biochemistry ; 48(46): 11097-107, 2009 Nov 24.
Article in English | MEDLINE | ID: mdl-19817487

ABSTRACT

We employed solid state (2)H NMR, complemented by computer simulations, to compare molecular organization in model membranes composed of 1-elaidoyl-2-stearoylphosphatidylcholine (t18:1-18:0PC), 1-oleoyl-2-stearoylphosphatidylcholine (c18:1-18:0PC), and 1,2-distearoylphosphatidylcholine (18:0-18:0PC). These phospholipids have elaidic acid (EA) containing a trans double bond, oleic acid (OA) containing a cis double bond, and saturated stearic acid (SA), respectively, at the sn-1 position and were synthesized with perdeuterated SA at the sn-2 position. The temperature of the chain melting transition is depressed less for t18:1-18:0PC (31.5 degrees C) than c18:1-18:0PC (7 degrees C) relative to 18:0-18:0PC (53 degrees C), reflecting the smaller deviation from the linear conformation produced by a trans as opposed to cis double bond. Acyl chain order in t18:1-18:0PC (S(CD) = 0.135) in the liquid crystalline state is much closer to that of c18:1-18:0PC (S(CD) = 0.128) than that of the substantially more ordered 18:0-18:0PC (S(CD) > 0.156), which is attributed to the reduced energy barrier to rotation about the C-C single bonds next to either a trans or cis carbon double bond. A conformation that somewhat resembles a saturated chain and an intrinsic disorder approaching that of a cis unsaturated chain characterize EA and, we speculate, may play a role in the adverse impact dietary trans fatty acids (TFA) have on biological function.


Subject(s)
Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Trans Fatty Acids/chemistry , Algorithms , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Oleic Acid/chemistry , Oleic Acids , Phase Transition , Temperature , Transition Temperature
16.
J Phys Chem B ; 113(40): 13229-34, 2009 Oct 08.
Article in English | MEDLINE | ID: mdl-19754078

ABSTRACT

A 100 ns simulation of a fluid phase dioleoylphosphatidylcholine bilayer, consisting of 288 lipid molecules at full hydration, has been studied to describe in detail the lateral translational motion of individual lipid molecules. Analysis of the simulation trajectories suggests that correlated motion between neighboring lipid molecules is an important aspect of lipid dynamics. The correlation among neighboring lipids within a monolayer is substantial and surprisingly long-ranged with a decay length of approximately 25 A. This provides a mechanism for the previously published observation that lateral diffusion coefficients computed from molecular dynamics simulations exhibited a strong dependence on the size of the unit cell and for the recent suggestion that lipid flows on that nanoscale are an important component of translational diffusion within membranes. Additionally, we show that diffusive motion is only weakly correlated between lipids in opposing monolayers.


Subject(s)
Computer Simulation , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Phospholipids/chemistry , Membrane Fluidity
17.
Biochemistry ; 48(11): 2355-67, 2009 Mar 24.
Article in English | MEDLINE | ID: mdl-19254034

ABSTRACT

The ability of human immunodeficiency virus type 1 (HIV-1) to egress from human cells by budding with the cell membrane remains a complex phenomenon of unclear steps. HIV-1 viral protein R (Vpr) incorporation in sorting virions relies greatly on the interaction with the group-specific antigen (Gag) C-terminal region, which encompasses protein p6. The complete role of p6 is still undetermined; however, it is thought that p6 interacts with protein core elements from the endosomal sorting complex ESCRT-1, known to sort ubiquitinated cargo into multivesicular bodies (MVB). The three-dimensional structure of the p6 C-terminus (p6ct) comprising amino acids 32-52, determined in this study using NMR methods, includes the region thought to interact with Vpr, i.e., the LXXLF sequence. Here we present new results indicating that the region which interacts with Vpr is the ELY(36) sequence, in the same region where mutational studies revealed that replacing Y36 with a phenylalanine would increase the infectivity of virions by 300-fold. The interaction of Vpr with an egg PC bilayer in the presence of p6ct measured by plasmon waveguide resonance (PWR) is approximately 0.8 microM, approximately 100 times stronger in the absence of p6ct. Our results suggests an interaction based on an ELYP(37) sequence bearing similarities with recently published results, which elegantly demonstrated that the HIV-1 Gag LYPx(n)LxxL motif interacts with Alix 364-702. Moreover, we performed a 60 ns molecular dynamics (MD) simulation of p6ct in DPC micelles. The MD results, supported by differential scanning calorimetry measurements in DMPC, show that p6ct adsorbs onto the DPC micelle surface by adopting a rather stable alpha-helix. Our results provide insights regarding the HIV-1 virion sorting mechanism, specifically concerning the interaction between p6 and Vpr. We also suggest that Gag p6 may adsorb onto the surface of membranes during the sorting process, a property so far only attributed to the N-terminal portion of Gag matrix (MA), which is myristylated. The implications of such a novel event provide an alternative direction toward understanding the assembly and escape mechanisms of virions, which have been undetected so far.


Subject(s)
gag Gene Products, Human Immunodeficiency Virus/chemistry , vpr Gene Products, Human Immunodeficiency Virus/chemistry , Amino Acid Sequence , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Sequence Data , Protein Binding
18.
Proteins ; 76(2): 403-17, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19173312

ABSTRACT

An unresolved question about GPCR function is the role of membrane components in receptor stability and activation. In particular, cholesterol is known to affect the function of membrane proteins, but the details of its effect on GPCRs are still elusive. Here, we describe how cholesterol modulates the behavior of the TM1-TM2-TM7-helix 8(H8) functional network that comprises the highly conserved NPxxY(x)(5,6)F motif, through specific interactions with the receptor. The inferences are based on the analysis of microsecond length molecular dynamics (MD) simulations of rhodopsin in an explicit membrane environment. Three regions on the rhodopsin exhibit the highest cholesterol density throughout the trajectory: the extracellular end of TM7, a location resembling the high-density sterol area from the electron microscopy data; the intracellular parts of TM1, TM2, and TM4, a region suggested as the cholesterol binding site in the recent X-ray crystallography data on beta(2)-adrenergic GPCR; and the intracellular ends of TM2-TM3, a location that was categorized as the high cholesterol density area in multiple independent 100 ns MD simulations of the same system. We found that cholesterol primarily affects specific local perturbations of the helical TM domains such as the kinks in TM1, TM2, and TM7. These local distortions, in turn, relate to rigid-body motions of the TMs in the TM1-TM2-TM7-H8 bundle. The specificity of the effects stems from the nonuniform distribution of cholesterol around the protein. Through correlation analysis we connect local effects of cholesterol on structural perturbations with a regulatory role of cholesterol in the structural rearrangements involved in GPCR function.


Subject(s)
Cholesterol/chemistry , Cholesterol/metabolism , Rhodopsin/chemistry , Binding Sites , Computer Simulation , Crystallography, X-Ray , Models, Molecular , Protein Conformation , Protein Folding , Rhodopsin/metabolism
19.
Langmuir ; 24(21): 12469-73, 2008 Nov 04.
Article in English | MEDLINE | ID: mdl-18850686

ABSTRACT

Simulations of a 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine lipid bilayer interacting with a solid surface of hydroxylated nanoporous amorphous silica have been carried out over a range of lipid-solid substrate distances. The porous solid surface allowed the water layer to dynamically adjust its thickness, maintaining equal pressures above and below the membrane bilayer. Qualitative estimates of the force between the surfaces leads to an estimated lipid-silicon distance in very good agreement with the results of neutron scattering experiments. Detailed analysis of the simulation at the separation suggested by experiment shows that for this type of solid support the water layer between surfaces is very narrow, consisting only of bound waters hydrating the lipid head groups and hydrophilic silica surface. The reduced hydration, however, has only minor effects on the head group hydration, the orientation of water molecules at the interface, and the membrane dipole potential. Whereas these structural properties were not sensitive to the presence of the solid substrate, the calculated diffusion coefficient for translation of the lipid molecules was altered significantly by the silica surface.


Subject(s)
Computer Simulation , Lipid Bilayers , Probability , Static Electricity
20.
J Mol Biol ; 381(2): 478-86, 2008 Aug 29.
Article in English | MEDLINE | ID: mdl-18585736

ABSTRACT

Rhodopsin, the membrane protein responsible for dim-light vision, until recently was the only G-protein-coupled receptor (GPCR) with a known crystal structure. As a result, there is enormous interest in studying its structure, dynamics, and function. Here we report the results of three all-atom molecular dynamics simulations, each at least 1.5 micros, which predict that substantial changes in internal hydration play a functional role in rhodopsin activation. We confirm with (1)H magic angle spinning NMR that the increased hydration is specific to the metarhodopsin-I intermediate. The internal water molecules interact with several conserved residues, suggesting that changes in internal hydration may be important during the activation of other GPCRs. The results serve to illustrate the synergism of long-time-scale molecular dynamics simulations and NMR in enhancing our understanding of GPCR function.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Rhodopsin/chemistry , Water/chemistry , Computer Simulation , Magnetic Resonance Spectroscopy , Models, Molecular , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...