Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792185

ABSTRACT

This research focuses on the rational design of porous enzymatic electrodes, using horseradish peroxidase (HRP) as a model biocatalyst. Our goal was to identify the main obstacles to maximizing biocatalyst utilization within complex porous structures and to assess the impact of various carbon nanomaterials on electrode performance. We evaluated as-synthesized carbon nanomaterials, such as Carbon Aerogel, Coral Carbon, and Carbon Hollow Spheres, against the commercially available Vulcan XC72 carbon nanomaterial. The 3D electrodes were constructed using gelatin as a binder, which was cross-linked with glutaraldehyde. The bioelectrodes were characterized electrochemically in the absence and presence of 3 mM of hydrogen peroxide. The capacitive behavior observed was in accordance with the BET surface area of the materials under study. The catalytic activity towards hydrogen peroxide reduction was partially linked to the capacitive behavior trend in the absence of hydrogen peroxide. Notably, the Coral Carbon electrode demonstrated large capacitive currents but low catalytic currents, an exception to the observed trend. Microscopic analysis of the electrodes indicated suboptimal gelatin distribution in the Coral Carbon electrode. This study also highlighted the challenges in transferring the preparation procedure from one carbon nanomaterial to another, emphasizing the importance of binder quantity, which appears to depend on particle size and quantity and warrants further studies. Under conditions of the present study, Vulcan XC72 with a catalytic current of ca. 300 µA cm-2 in the presence of 3 mM of hydrogen peroxide was found to be the most optimal biocatalyst support.

2.
J Am Chem Soc ; 145(48): 26222-26237, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37983387

ABSTRACT

Mononuclear Fe ions ligated by nitrogen (FeNx) dispersed on nitrogen-doped carbon (Fe-N-C) serve as active centers for electrocatalytic O2 reduction and thermocatalytic aerobic oxidations. Despite their promise as replacements for precious metals in a variety of practical applications, such as fuel cells, the discovery of new Fe-N-C catalysts has relied primarily on empirical approaches. In this context, the development of quantitative structure-reactivity relationships and benchmarking of catalysts prepared by different synthetic routes and by different laboratories would be facilitated by the broader adoption of methods to quantify atomically dispersed FeNx active centers. In this study, we develop a kinetic probe reaction method that uses the aerobic oxidation of a model hydroquinone substrate to quantify the density of FeNx centers in Fe-N-C catalysts. The kinetic method is compared with low-temperature Mössbauer spectroscopy, CO pulse chemisorption, and electrochemical reductive stripping of NO derived from NO2- on a suite of Fe-N-C catalysts prepared by diverse routes and featuring either the exclusive presence of Fe as FeNx sites or the coexistence of aggregated Fe species in addition to FeNx. The FeNx site densities derived from the kinetic method correlate well with those obtained from CO pulse chemisorption and Mössbauer spectroscopy. The broad survey of Fe-N-C materials also reveals the presence of outliers and challenges associated with each site quantification approach. The kinetic method developed here does not require pretreatments that may alter active-site distributions or specialized equipment beyond reaction vessels and standard analytical instrumentation.

3.
Mater Horiz ; 10(12): 5577-5583, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37789691

ABSTRACT

The degradation of a single-site atomically dispersed, model Fe-N-C powder catalyst with high activity is investigated using cryo-Mössbauer spectroscopy. The results indicate a degradation initiated by an Fe2+ to Fe3+ oxidation due to coordination of oxygen to tetrapyrrolic Fe-N4 sites at atmospheric conditions (change between characteristic doublets) before iron(III) oxide is formed (sextet). Thermal reactivation can be used to restore substantial catalytic activity of aged Fe-N-C powders.

4.
Angew Chem Int Ed Engl ; 61(50): e202207089, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36169268

ABSTRACT

M-N-C electrocatalysts are considered pivotal to replace expensive precious group metal-based materials in electrocatalytic conversions. However, their development is hampered by the limited availability of methods for the evaluation of the intrinsic activity of different active sites, like pyrrolic FeN4 sites within Fe-N-Cs. Currently, new synthetic procedures based on active-site imprinting followed by an ion exchange reaction, e.g. Zn-to-Fe, are producing single-site M-N-Cs with outstanding activity. Based on the same replacement principle, we employed a conservative iron extraction to partially remove the Fe ions from the N4 cavities in Fe-N-Cs. Having catalysts with the same morphological properties and Fe ligation that differ solely in Fe content allows for the facile determination of the decrease in density of active sites and their turn-over frequency. In this way, insight into the specific activity of M-N-Cs is obtained and for single-site catalysts the intrinsic activity of the site is accessible. This new approach surpasses limitations of methods that rely on probe molecules and, together with those techniques, offers a novel tool to unfold the complexity of Fe-N-C catalyst and M-N-Cs in general.


Subject(s)
Hypoxia , Iron , Humans , Ion Exchange , Pyrroles , Oxygen
5.
J Am Chem Soc ; 143(43): 18010-18019, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34689551

ABSTRACT

Combining the abundance and inexpensiveness of their constituent elements with their atomic dispersion, atomically dispersed Fe-N-C catalysts represent the most promising alternative to precious-metal-based materials in proton exchange membrane (PEM) fuel cells. Due to the high temperatures involved in their synthesis and the sensitivity of Fe ions toward carbothermal reduction, current synthetic methods are intrinsically limited in type and amount of the desired, catalytically active Fe-N4 sites, and high active site densities have been out of reach (dilemma of Fe-N-C catalysts). We herein identify a paradigm change in the synthesis of Fe-N-C catalysts arising from the developments of other M-N-C single-atom catalysts. Supported by DFT calculations we propose fundamental principles for the synthesis of M-N-C materials. We further exploit the proposed principles in a novel synthetic strategy to surpass the dilemma of Fe-N-C catalysts. The selective formation of tetrapyrrolic Zn-N4 sites in a tailor-made Zn-N-C material is utilized as an active-site imprint for the preparation of a corresponding Fe-N-C catalyst. By successive low- and high-temperature ion exchange reactions, we obtain a phase-pure Fe-N-C catalyst, with a high loading of atomically dispersed Fe (>3 wt %). Moreover, the catalyst is entirely composed of tetrapyrrolic Fe-N4 sites. The density of tetrapyrrolic Fe-N4 sites is more than six times as high as for previously reported tetrapyrrolic single-site Fe-N-C fuel cell catalysts.

6.
Beilstein J Nanotechnol ; 11: 1217-1229, 2020.
Article in English | MEDLINE | ID: mdl-32832317

ABSTRACT

Hard carbons are promising candidates for high-capacity anode materials in alkali metal-ion batteries, such as lithium- and sodium-ion batteries. High reversible capacities are often coming along with high irreversible capacity losses during the first cycles, limiting commercial viability. The trade-off to maximize the reversible capacities and simultaneously minimizing irreversible losses can be achieved by tuning the exact architecture of the subnanometric pore system inside the carbon particles. Since the characterization of small pores is nontrivial, we herein employ Kr, N2 and CO2 gas sorption porosimetry, as well as H2O vapor sorption porosimetry, to investigate eight hard carbons. Electrochemical lithium as well as sodium storage tests are compared to the obtained apparent surface areas and pore volumes. H2O, and more importantly CO2, sorption porosimetry turned out to be the preferred methods to evaluate the likelihood for excessive irreversible capacities. The methods are also useful to select the relatively most promising active materials within chemically similar materials. A quantitative relation of porosity descriptors to the obtained capacities remains a scientific challenge.

7.
Nanoscale ; 11(27): 13154-13160, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31267117

ABSTRACT

"Chemical activation" using Brønsted acids as chemical agents is widely used to generate activated carbons for various sorption applications. Commercially relevant is especially a process using phosphoric acid as activating agent applied to abundant and inexpensive biomass such as wood or coconut shells. In this manuscript, we revisit the porogenesis mechanism based on experiments involving molecular model compounds and oxygen-free polymer precursors, as well as different molten acids as activating agents. Describing acid activation with principles of sol-gel chemistry results in a more general understanding and uncovers a versatile synthetic tool for materials nanochemistry.

8.
J Am Chem Soc ; 140(9): 3352-3360, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29405064

ABSTRACT

Single-walled carbon nanotubes (SWCNT) have been covalently cross-linked via a reductive functionalization pathway, utilizing negatively charged carbon nanotubides (KC4). We have compared the use of difunctional linkers acting as molecular pillars between the nanotubes, namely, p-diiodobenzene, p-diiodobiphenyl, benzene-4,4'-bis(diazonium), and 1,1'-biphenyl-4,4'-bis(diazonium) salts as electrophiles. We have employed statistical Raman spectroscopy (SRS), a forefront characterization tool consisting of thermogravimetric analysis coupled with gas chromatography and mass spectrometry (TG-GC-MS) and aberration-corrected high-resolution transmission electron microscopy imaging series at 80 kV to unambiguously demonstrate the covalent binding of the molecular linkers. The present study shows that the SWCNT functionalization using iodide derivatives leads to the best results in terms of bulk functionalization homogeneity ( Hbulk) and degree of addition. Phenylene linkers yield the highest degree of functionalization, whereas biphenylene units induce a higher surface area with an increase in the thermal stability and an improved electrochemical performance in the oxygen reduction reaction (ORR). This work illustrates the importance of molecular engineering in the design of novel functional materials and provides important insights into the understanding of basic principles of reductive cross-linking of carbon nanotubes.

9.
Phys Chem Chem Phys ; 19(32): 21446-21452, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28759065

ABSTRACT

The dissolution of different platinum-based nanoparticles deposited on a commercial high-surface area carbon (HSAC) support in thin catalyst films is investigated using a highly sensitive electrochemical flow cell (EFC) coupled to an inductively coupled plasma mass spectrometer (ICP-MS). The previously reported particle-size-dependent dissolution of Pt is confirmed on selected industrial samples with a mean Pt particle size ranging from 1 to 4.8 nm. This trend is significantly altered when a catalyst is diluted by the addition of HSAC. This indicates that the intrinsic dissolution properties are masked by local oversaturation phenomena, the so-called confinement effect. Furthermore, by replacing the standard HSAC support with a support having an order of magnitude higher specific surface area (a micro- and mesoporous nitrogen-doped high surface area carbon, HSANDC), Pt dissolution is reduced even further. This is due to the so-called non-intrinsic confinement and entrapment effects of the (large amount of) micropores and small mesopores doped with N atoms. The observed more effective Pt re-deposition is presumably induced by local Pt oversaturation and the presence of nitrogen nucleation sites. Overall, our study demonstrates the high importance and beneficial effects of porosity, loading and N doping of the carbon support on the Pt stability in the catalyst layer.

10.
ACS Appl Mater Interfaces ; 8(39): 26041-26050, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27603003

ABSTRACT

Lithium oxygen batteries (LOBs) are a very promising upcoming technology which, however, still suffers from low lifespan and dramatic capacities fading. Solid discharge products increase the contact resistance and block the electrochemically active electrodes. The resulting high oxidative potentials and formation of Li2CO3 due to electrolyte and carbon electrode decomposition at the positive electrode lead to irreversible deactivation of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) sites. Here we demonstrate a facile strategy for the scalable production of a new electrode structure constituted of vertically aligned carbon nanosheets and metal hydroxide (M(OH)x@CNS) hybrid arrays, integrating both favorable ORR and OER active materials to construct bifunctional catalysts for LOBs. Excellent lithium-oxygen battery properties with high specific capacity of 5403 mAh g-1 and 12123 mAh g-1 referenced to the carbon and M(OH)x weight, respectively, long cyclability, and low charge potentials are achieved in the resulting M(OH)x@CNS cathode architecture. The properties are explained by improved O2/ion transport properties and spatially limited precipitation of Li2O2 nanoparticles inside interstitial cavities resulting in high reversibility. The strategy of creating ORR and OER bifunctional catalysts in a single conductive hybrid component may pave the way to new cathode architectures for metal air batteries.

11.
ChemSusChem ; 9(19): 2788-2795, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27509893

ABSTRACT

Microbial fuel cells (MFCs) can generate electricity from the oxidation of organic substrates using anodic exoelectrogenic bacteria and have great potential for harvesting electric energy from wastewater. Improving oxygen reduction reaction (ORR) performance at a neutral pH is needed for efficient energy production. Here we show a nitrogen doped (≈4 wt%) ionothermal carbon aerogel (NDC) with a high surface area, large pore volume, and hierarchical porosity, with good electrocatalytic properties for ORR in MFCs. The MFCs using NDC air cathodes achieved a high maximum power density of 2300 mW m-2 , which was 1.7 times higher than the most commonly used Pt/C air cathodes and also higher than most state-of-the-art ORR catalyst air cathodes. Rotating disk electrode measurements verified the superior electrocatalytic activity of NDC with an efficient four-electron transfer pathway (n=3.9). These findings highlight NDC as a better-performing and cost-efficient catalyst compared with Pt/C, making it highly viable for MFC applications.


Subject(s)
Bioelectric Energy Sources , Carbon/chemistry , Electrodes , Air , Catalysis , Kinetics , Oxidation-Reduction
12.
ACS Nano ; 10(4): 4364-71, 2016 04 26.
Article in English | MEDLINE | ID: mdl-26986215

ABSTRACT

The use of lignin as a precursor for the synthesis of materials is nowadays considered very interesting from a sustainability standpoint. Here we illustrate the synthesis of a micro-, meso-, and macroporous nitrogen-doped carbon (NDC) using lignin extracted from beech wood via alkaline hydrothermal treatment and successively functionalized via aromatic nitration. The so obtained material is thus carbonized in the eutectic salt melt KCl/ZnCl2. The final NDC shows an excellent activity as electrocatalyst for the oxygen reduction reaction.

13.
ACS Nano ; 10(3): 3166-75, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26863408

ABSTRACT

Herein, we present an approach to create a hybrid between single-atom-dispersed silver and a carbon nitride polymer. Silver tricyanomethanide (AgTCM) is used as a reactive comonomer during templated carbon nitride synthesis to introduce both negative charges and silver atoms/ions to the system. The successful introduction of the extra electron density under the formation of a delocalized joint electronic system is proven by photoluminescence measurements, X-ray photoelectron spectroscopy investigations, and measurements of surface ζ-potential. At the same time, the principal structure of the carbon nitride network is not disturbed, as shown by solid-state nuclear magnetic resonance spectroscopy and electrochemical impedance spectroscopy analysis. The synthesis also results in an improvement of the visible light absorption and the development of higher surface area in the final products. The atom-dispersed AgTCM-doped carbon nitride shows an enhanced performance in the selective hydrogenation of alkynes in comparison with the performance of other conventional Ag-based materials prepared by spray deposition and impregnation-reduction methods, here exemplified with 1-hexyne.

14.
ChemSusChem ; 8(18): 3077-83, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26373362

ABSTRACT

An ionothermal sol-gel strategy to synthesize hierarchically porous carbon aerogels doped with different heteroatoms is presented by using biomass precursors in a scalable process. Morphologically similar but chemically different materials are used to study the influence of heteroatoms in Li-S batteries. The materials show capacities as high as 1290 mAh g(-1) in the first cycle using 50 wt % S loading. Heteroatom doping reduces the capacity fading and the polarization throughout cycling. Zeta potential measurements reveal positive surface charges for heteroatom-doped carbons and indicate attractive interactions with polysulfides causing reduced fading. A polysulfide-selective sorption study reveals strongly different adsorption behavior depending on the carbon's chemical composition. Interestingly, the polysulfide fraction is also crucial. The results indicate that improved adsorption of long-chain polysulfides to doped carbons is related to improved capacity retention.


Subject(s)
Biomass , Carbon/chemistry , Electric Power Supplies , Lithium/chemistry , Salts/chemistry , Sulfur/chemistry , Chemistry Techniques, Synthetic , Gels , Porosity
15.
ChemSusChem ; 8(11): 1823, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-26039519

ABSTRACT

Invited for this month's cover are the groups of Tim-Patrick Fellinger (MPI Potsdam) and Volker Presser (INM Saarbrücken and Saarland University). The image shows the dynamic process of ion electrosorption: anions are attracted and cations repelled from electrically charged electrodes based on carbons with heteroatoms. This process of capacitive deionization is particularly attractive for facile low-energy water treatment applications.


Subject(s)
Biomass , Carbon/chemistry , Electric Capacitance , Salts/chemistry
16.
ChemSusChem ; 8(11): 1867-74, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-25970654

ABSTRACT

Microporous carbons are an interesting material for electrochemical applications. In this study, we evaluate several such carbons without/with N or S doping with regard to capacitive deionization. For this purpose, we extent the salt-templating synthesis towards biomass precursors and S-doped microporous carbons. The sample with the largest specific surface area (2830 m(2) g(-1) ) showed 1.0 wt % N and exhibited a high salt-sorption capacity of 15.0 mg g(-1) at 1.2 V in 5 mM aqueous NaCl. While being a promising material from an equilibrium performance point of view, our study also gives first insights to practical limitations of heteroatom-doped carbon materials. We show that high heteroatom content may be associated with a low charge efficiency. The latter is a key parameter for capacitive deionization and is defined as the ratio between the amounts of removed salt molecules and electrical charge.


Subject(s)
Biomass , Carbon/chemistry , Electric Capacitance , Sodium Chloride/chemistry , Polymerization , Porosity , Salinity
17.
J Am Chem Soc ; 137(16): 5480-5, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25851622

ABSTRACT

The synthesis of vertically aligned functional graphitic carbon nanosheets (CNS) is challenging. Herein, we demonstrate a general approach for the fabrication of vertically aligned CNS and metal carbide@CNS composites via a facile salt templating induced self-assembly. The resulting vertically aligned CNS and metal carbide@CNS structures possess ultrathin walls, good electrical conductivity, strong adhesion, excellent structural robustness, and small particle size. In electrochemical energy conversion and storage such unique features are favorable for providing efficient mass transport as well as a large and accessible electroactive surface. The materials were tested as electrodes in a lithium ion battery and in electrochemical water splitting. The vertically aligned nanosheets exhibit remarkable lithium ion storage properties and, concurrently, excellent properties as electrocatalysts for hydrogen evolution.

18.
ChemSusChem ; 8(7): 1156-60, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25739370

ABSTRACT

Electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are key reactions in lithium-oxygen batteries (LOBs) being a promising candidate to store renewable energies due to their high specific energy. However current development on LOBs is suffering from unsuitable catalysts. In particular, carbon-based catalysts were found to perform poorly in this system. Here, we show that metal-free mesoporous nitrogen-doped carbons (meso-NdCs) offer highly promising performances in both ORR and OER; they act as bifunctional catalysts, and can be synthesized by a very simple method. The efficient electrocatalytic activity of ORR and OER was used in a LOB cell during discharge and charge, respectively, and the present system showed a lower overpotential comparable to metal-based catalysts in LOB system. Thus, we demonstrate that meso-NdCs act as a new and affordable candidate for the efficient bifunctional oxygen catalysis, therefore can be applied to many energy-related applications.


Subject(s)
Carbon/chemistry , Oxygen/chemistry , Catalysis , Electrochemistry , Oxidation-Reduction , Porosity
19.
Angew Chem Int Ed Engl ; 54(18): 5507-12, 2015 Apr 27.
Article in English | MEDLINE | ID: mdl-25740456

ABSTRACT

A combination of ionothermal synthesis and hot-injection techniques leads to novel nanocarbons made from organic solvents. Controlled addition of commonly used organic solvents into a hot ZnCl2 melt gives rise to spherical, sheetlike, and branched nanofibrous carbon nanoparticles with surprisingly high carbon efficiency. When heteroatom-containing solvents were used, the doping levels reach up to 14 wt. % nitrogen and 13 wt. % sulfur. Materials with high surface areas and large pore volumes of solvent carbons as high as 1666 m(2) g(-1) and 2.80 cm(3) g(-1) in addition to CO2 adsorption capacities of 4.13 mmol g(-1) at 273 K and 1 bar can be obtained. The new method works not only for pure carbon materials, but was also extended for the synthesis of carbon/inorganic nanocomposites. ZnS@C, Ni@C, and Co@C were successfully prepared with this straightforward procedure. The obtained Ni@C nanocomposites perform well in the electrocatalytic water oxidation, comparable with commercial noble-metal catalysts.

20.
Small ; 9(24): 4135-41, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-23847129

ABSTRACT

Dispersible, highly graphitic, and nitrogen-doped carbon hollow nanospheres (25-90 nm), termed 'nanobubbles', are prepared via confined carbonization through a silica nanocasting technique. Poly(ionic liquid) nanoparticles are employed as easy-to-make and multifunctional templates, which simultaneously act as both the carbon and nitrogen source. The promising potential of the nanobubbles in oxygen reduction reactions for fuel cells is demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...