Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Metab ; 134(4): 330-336, 2021 12.
Article in English | MEDLINE | ID: mdl-34802899

ABSTRACT

Niemann-Pick disease, type C1 is a progressive, lethal, neurodegenerative disorder due to endolysosomal storage of unesterified cholesterol. Cerebellar ataxia, as a result of progressive loss of cerebellar Purkinje neurons, is a major symptom of Nieman-Pick disease, type C1. Comparing single cell RNAseq data from control (Npc1+/+) and mutant (Npc1-/-) mice, we observed significantly decreased expression of Slc1a3 in Npc1-/- astrocytes. Slc1a3 encodes a glutamate transporter (GLAST, EAAT1) which functions to decrease glutamate concentrations in the post synaptic space after neuronal firing. Glutamate is an excitatory neurotransmitter and elevated extracellular levels of glutamate can be neurotoxic. Impaired EAAT1 function underlies type-6 episodic ataxia, a rare disorder with progressive cerebellar dysfunction, thus suggesting that impaired glutamate uptake in Niemann-Pick disease, type C1 could contribute to disease progression. We now show that decreased expression of Slc1a3 in Npc1-/- mice has functional consequences that include decreased surface protein expression and decreased glutamate uptake by Npc1-/- astrocytes. To test whether glutamate neurotoxicity plays a role in Niemann-Pick disease, type C1 progression, we treated NPC1 deficient mice with ceftriaxone and riluzole. Ceftriaxone is a ß-lactam antibiotic that is known to upregulate the expression of Slc1a2, an alternative glial glutamate transporter. Although ceftriaxone increased Slc1a2 expression, we did not observe a treatment effect in NPC1 mutant mice. Riluzole is a glutamate receptor antagonist that inhibits postsynaptic glutamate receptor signaling and reduces the release of glutamate. We found that treatment with riluzole increased median survival in Npc1-/- by 12%. Given that riluzole is an approved drug for the treatment of amyotrophic lateral sclerosis, repurposing of this drug may provide a novel therapeutic approach to decrease disease progression in Niemann-Pick disease type, C1 patients.


Subject(s)
Ceftriaxone/therapeutic use , Glutamic Acid/toxicity , Niemann-Pick Disease, Type C/drug therapy , Riluzole/therapeutic use , Animals , Astrocytes/metabolism , Cells, Cultured , Disease Models, Animal , Excitatory Amino Acid Transporter 1/physiology , Female , Glutamic Acid/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Niemann-Pick C1 Protein/physiology
2.
Mol Genet Metab ; 131(3): 364-366, 2020 11.
Article in English | MEDLINE | ID: mdl-33129690

ABSTRACT

Niemann-Pick type C1 (NPC1) is a rare neurodegenerative disease. In NPC1 mouse cerebella, the antibacterial enzyme, lysozyme (Lyz2), is significantly increased in multiple cell types. Due to its possible role in toxic fibril deposition, we confirmed Lyz2 overexpression in culture in different control and NPC1 cell types including human NPC1 fibroblasts. Lyz2 expression is induced by Toll-like receptors potentially in response to lipid storage but does not play a functional role in NPC disease pathology.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Muramidase/genetics , Niemann-Pick Disease, Type C/genetics , Toll-Like Receptors/genetics , Animals , Astrocytes/metabolism , Fibroblasts , Gene Expression/genetics , Humans , Mice , Mice, Knockout , Microglia/metabolism , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/pathology
3.
Int J Mol Sci ; 21(15)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731618

ABSTRACT

Niemann-Pick disease, type C1 (NPC1) is a lysosomal disease characterized by endolysosomal storage of unesterified cholesterol and decreased cellular cholesterol bioavailability. A cardinal symptom of NPC1 is cerebellar ataxia due to Purkinje neuron loss. To gain an understanding of the cerebellar neuropathology we obtained single cell transcriptome data from control (Npc1+/+) and both three-week-old presymptomatic and seven-week-old symptomatic mutant (Npc1-/-) mice. In seven-week-old Npc1-/- mice, differential expression data was obtained for neuronal, glial, vascular, and myeloid cells. As anticipated, we observed microglial activation and increased expression of innate immunity genes. We also observed increased expression of innate immunity genes by other cerebellar cell types, including Purkinje neurons. Whereas neuroinflammation mediated by microglia may have both neuroprotective and neurotoxic components, the contribution of increased expression of these genes by non-immune cells to NPC1 pathology is not known. It is possible that dysregulated expression of innate immunity genes by non-immune cells is neurotoxic. We did not anticipate a general lack of transcriptomic changes in cells other than microglia from presymptomatic three-week-old Npc1-/- mice. This observation suggests that microglia activation precedes neuronal dysfunction. The data presented in this paper will be useful for generating testable hypotheses related to disease progression and Purkinje neurons loss as well as providing insight into potential novel therapeutic interventions.


Subject(s)
Cerebellum , Gene Expression Profiling , Microglia , Niemann-Pick Disease, Type C , Purkinje Cells , Single-Cell Analysis , Animals , Cerebellum/metabolism , Cerebellum/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Purkinje Cells/metabolism , Purkinje Cells/pathology
4.
Mol Genet Metab ; 129(2): 165-170, 2020 02.
Article in English | MEDLINE | ID: mdl-31668555

ABSTRACT

Niemann-Pick disease, type C1 (NPC1) is a rare neurodegenerative lysosomal storage disease with a wide spectrum of clinical manifestation. Multiple genetic factors influence the NPC1 mouse phenotype, but very little attention has been given to prenatal environmental factors that might have long-term effects on the neuroinflammatory component of NPC1 pathology. Studies in other mouse models of cerebellar ataxia have shown that developmental exposures lead to Purkinje neuron degeneration later in life, suggesting that environmental exposures during development can impact cerebellar biology. Thus, we evaluated the potential effect of maternal immune activation (MIA) on disease progression in an Npc1 mouse model. The MIA paradigm used mimics viral infection using the toll like receptor 3 agonist polyinosinic-polycytidilic acid during gestation. Through phenotypic and pathologic tests, we measured motor and behavioral changes as well as cerebellar neuroinflammation and neurodegeneration. We observed a gender and genotype dependent effect of MIA on the cerebellum. While the effects of MIA have been previously shown to primarily affect male progeny, we observed increased sensitivity of female mutant progeny to prenatal exposure to treatment with polyinosinic-polycytidilic acid. Specifically, prenatal MIA resulted in female NPC1 mutant progeny with greater motor deficits and a corresponding decrease in cerebellar Purkinje neurons. Our data suggest that prenatal environmental exposures may be one factor contributing to the phenotypic variability observed in individuals with NPC1.


Subject(s)
Maternal-Fetal Exchange/immunology , Neurons/pathology , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/immunology , Animals , Disease Models, Animal , Female , Male , Maternal-Fetal Exchange/drug effects , Mice , Mice, Inbred BALB C , Neurons/immunology , Poly I-C/administration & dosage , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Sex Factors
5.
J Neuroinflammation ; 16(1): 276, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31883529

ABSTRACT

BACKGROUND: Lysosomal storage diseases (LSD) are a large family of inherited disorders characterized by abnormal endolysosomal accumulation of cellular material due to catabolic enzyme and transporter deficiencies. Depending on the affected metabolic pathway, LSD manifest with somatic or central nervous system (CNS) signs and symptoms. Neuroinflammation is a hallmark feature of LSD with CNS involvement such as mucolipidosis type IV, but not of others like Fabry disease. METHODS: We investigated the properties of microglia from LSD with and without major CNS involvement in 2-month-old mucolipidosis type IV (Mcoln1-/-) and Fabry disease (Glay/-) mice, respectively, by using a combination of flow cytometric, RNA sequencing, biochemical, in vitro and immunofluorescence analyses. RESULTS: We characterized microglia activation and transcriptome from mucolipidosis type IV and Fabry disease mice to determine if impaired lysosomal function is sufficient to prime these brain-resident immune cells. Consistent with the neurological pathology observed in mucolipidosis type IV, Mcoln1-/- microglia demonstrated an activation profile with a mixed neuroprotective/neurotoxic expression pattern similar to the one we previously observed in Niemann-Pick disease, type C1, another LSD with significant CNS involvement. In contrast, the Fabry disease microglia transcriptome revealed minimal alterations, consistent with the relative lack of CNS symptoms in this disease. The changes observed in Mcoln1-/- microglia showed significant overlap with alterations previously reported for other common neuroinflammatory disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Indeed, our comparison of microglia transcriptomes from Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick disease, type C1 and mucolipidosis type IV mouse models showed an enrichment in "disease-associated microglia" pattern among these diseases. CONCLUSIONS: The similarities in microglial transcriptomes and features of neuroinflammation and microglial activation in rare monogenic disorders where the primary metabolic disturbance is known may provide novel insights into the immunopathogenesis of other more common neuroinflammatory disorders. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01067742, registered on February 12, 2010.


Subject(s)
Microglia/metabolism , Mucolipidoses/genetics , Mucolipidoses/pathology , Transcriptome , Animals , Fabry Disease/genetics , Fabry Disease/metabolism , Fabry Disease/pathology , Humans , Mice , Mice, Transgenic , Microglia/pathology , Mucolipidoses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...