Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 380(2235): 20210267, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36088930

ABSTRACT

Perspectives are discussed on future directions for the field of marginal ice zone (MIZ) dynamics, based on the extraordinary progress made over the past decade in its theory, modelling and observations. Research themes are proposed that would shift the field's focus towards the broader implications of MIZ dynamics in the climate system. In particular, pathways are recommended for research that highlights the impacts of trends in the MIZ on the responses of Arctic and Antarctic sea ice to climate change. This article is part of the theme issue 'Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks'.


Subject(s)
Climate Change , Ice Cover , Antarctic Regions , Arctic Regions
2.
Philos Trans A Math Phys Eng Sci ; 376(2129)2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30126920

ABSTRACT

The drift and deformation of sea ice floating on the polar oceans is caused by the applied wind and ocean currents. Over ocean basin length scales the internal stresses and boundary conditions of the sea ice pack result in observable deformation patterns. Cracks and leads can be observed in satellite images and within the velocity fields generated from floe tracking. In a climate sea ice model the deformation of sea ice over ocean basin length scales is modelled using a rheology that represents the relationship between stresses and deformation within the sea ice cover. Here we investigate the link between emergent deformation characteristics and the underlying internal sea ice stresses using the Los Alamos numerical sea ice climate model. We have developed an idealized square domain, focusing on the role of sea ice rheologies in producing deformation at spatial resolutions of up to 500 m. We use the elastic anisotropic plastic (EAP) and elastic viscous plastic (EVP) rheologies, comparing their stability, with the EAP rheology producing sharper deformation features than EVP at all space and time resolutions. Sea ice within the domain is forced by idealized winds, allowing for the emergence of five distinct deformation types. Two for a low confinement ratio: convergent and expansive stresses. Two about a critical confinement ratio: isotropic and anisotropic conditions. One for a high confinement ratio and isotropic sea ice. Using the EAP rheology and through the modification of initial conditions and forcing, we show the emergence of the power law of strain rate, in accordance with observations.This article is part of the theme issue 'Modelling of sea-ice phenomena'.

3.
J Math Biol ; 40(4): 321-42, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10853796

ABSTRACT

A minimal model of species migration is presented which takes the form of a parabolic equation with boundary conditions and initial data. Solutions to the differential problem are obtained that can be used to describe the small- and large-time evolution of a species distribution within a bounded domain. These expressions are compared with the results of numerical simulations and are found to be satisfactory within appropriate temporal regimes. The solutions presented can be used to describe existing observations of nematode distributions, can be used as the basis for further work on nematode migration, and may also be interpreted more generally.


Subject(s)
Chemotaxis/physiology , Models, Biological , Nematoda/physiology , Soil/parasitology , Animals , Computer Simulation , Diffusion , Numerical Analysis, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...