Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cryst Growth Des ; 23(6): 3996-4012, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37304401

ABSTRACT

We report the structural and magnetic properties of two new Mn3+ complex cations in the spin crossover (SCO) [Mn(R-sal2323)]+ series, in lattices with seven different counterions in each case. We investigate the effect on the Mn3+ spin state of appending electron-withdrawing and electron-donating groups on the phenolate donors of the ligand. This was achieved by substitution of the ortho and para positions on the phenolate donors with nitro and methoxy substituents in both possible geometric isomeric forms. Using this design paradigm, the [MnL1]+ (a) and [MnL2]+ (b) complex cations were prepared by complexation of Mn3+ to the hexadentate Schiff base ligands with 3-nitro-5-methoxy-phenolate or 3-methoxy-5-nitro-phenolate substituents, respectively. A clear trend emerges with adoption of the spin triplet form in complexes 1a-7a, with the 3-nitro-5-methoxy-phenolate donors, and spin triplet, spin quintet and thermal SCO in complexes 1b-7b with the 3-methoxy-5-nitro-phenolate ligand isomer. The outcomes are discussed in terms of geometric and steric factors in the 14 new compounds and by a wider analysis of electronic choices of Mn3+ with related ligands by comparison of bond length and angular distortion data of previously reported analogues in the [Mn(R-sal2323)]+ family. The structural and magnetic data published to date suggest a barrier to switching may exist for high spin forms of Mn3+ in those complexes with the longest bond lengths and highest distortion parameters. A barrier to switching from low spin to high spin is less clear but may operate in the seven [Mn(3-NO2-5-OMe-sal2323)]+ complexes 1a-7a reported here which were all low spin in the solid state at room temperature.

2.
Chemistry ; 29(37): e202300275, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37037023

ABSTRACT

Non-centrosymmetric spin-switchable systems are of interest for their prospective applications as magnetically active non-linear optical materials and in multiferroic devices. Chiral resolution of simple spin-crossover chelate complexes into the Δ and Λ forms offers a facile route to homochiral magnetic switches, which could be easily enantiomerically enriched. Here, we report the spontaneous resolution of a new hysteretic spin-crossover complex, [MnIII (sal2 323)]SCN ⋅ EtOH (1), into Δ and Λ forms, without the use of chiral reagents, where sal2 323 is a Schiff base resulting from condensation of 1,2-bis(3-aminopropylamino)ethane with 2-hydroxybenzaldehyde. The enantiopurity of the Δ and Λ isomers was confirmed by single crystal X-ray diffraction and circular dichroism. Quantum chemistry calculations were used to investigate the electronic structure. The opening of a wide 80 K thermal hysteresis window at high temperature highlights the potential for good magneto-optical function at ambient temperature for materials of this type.

3.
Angew Chem Int Ed Engl ; 62(18): e202217388, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36794891

ABSTRACT

Reversible proton-induced spin state switching of an FeIII complex in solution is observed at room temperature. A reversible magnetic response was detected in the complex, [FeIII (sal2 323)]ClO4 (1), using Evans' method 1 H NMR spectroscopy which indicated cumulative switching from low-spin to high-spin upon addition of one and two equivalents of acid. Infrared spectroscopy suggests a coordination-induced spin state switching (CISSS) effect, whereby protonation displaces the metal-phenoxo donors. The analogous complex, [FeIII (4-NEt2 -sal2 323)]ClO4 (2), with a diethylamino group on the ligand, was used to combine the magnetic change with a colorimetric response. Comparison of the protonation responses of 1 and 2 reveals that the magnetic switching is caused by perturbation of the immediate coordination sphere of the complex. These complexes constitute a new class of analyte sensor which operate by magneto-modulation, and in the case of 2, also yield a colorimetric response.

4.
Angew Chem Int Ed Engl ; 62(7): e201809334, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-30246909

ABSTRACT

Herein, we report on the preparation of liquid dimeric lanthanide(III)-containing compounds. Starting from the design of dimeric solids, we demonstrate that by tuning of anion and cation structures we can lower the melting points below room temperature, whilst maintaining the dimeric structure. Magnetic measurements could establish the spin-spin interactions of the neighboring lanthanide(III) ions in the liquid state at low temperatures, and matched the interactions of the analogous crystalline solid compounds.

5.
Cryst Growth Des ; 22(11): 6429-6439, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36345384

ABSTRACT

We report a single example of thermal spin crossover in a series of FeIII complexes, [FeIII(R-sal2323)]+, which typically stabilize the low-spin (S = 1/2) state. Single-crystal X-ray diffraction analysis of 53 such complexes with varying "R" groups, charge-balancing anions, and/or lattice solvation confirms bond lengths in line with an S = 1/2 ground state, with only the [FeIII(4-OMe-sal2323)]NO3 complex (1a) exhibiting longer bond lengths associated with a percentage of the spin sextet form at room temperature. Structural distortion parameters are investigated for the series. A magnetic susceptibility measurement of 1a reveals a gradual, incomplete transition, with T 1/2 = 265 K in the solid state, while Evans method NMR reveals that the sample persists in the low-spin form in solution at room temperature. Computational analysis of the spin state preferences for the cations [FeIII(4-OMe-sal2323)]+ and [FeIII(sal2323)]+ confirmed the energetic preference for the spin doublet form in both, and the thermal spin crossover in complex 1a is therefore attributed to perturbation of the crystal packing on warming.

6.
Inorg Chem ; 61(8): 3458-3471, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35175771

ABSTRACT

Structural, magnetic, and spectroscopic data on a Mn3+ spin-crossover complex with Schiff base ligand 4-OMe-Sal2323, isolated in crystal lattices with five different counteranions, are reported. Complexes of [Mn(4-OMe-Sal2323)]X where X = ClO4- (1), BF4- (2), NO3- (3), Br- (4), and I- (5) crystallize isotypically in the chiral orthorhombic space group P21212 with a range of spin state preferences for the [Mn(4-OMe-Sal2323)]+ complex cation over the temperature range 5-300 K. Complexes 1 and 2 are high-spin, complex 4 undergoes a gradual and complete thermal spin crossover, while complexes 3 and 5 show stepped crossovers with different ratios of spin triplet and quintet forms in the intermediate temperature range. High-field electron paramagnetic resonance was used to measure the zero-field splitting parameters associated with the spin triplet and quintet states at temperatures below 10 K for complexes 4 and 2 with respective values: DS=1 = +23.38(1) cm-1, ES=1 = +2.79(1) cm-1, and DS=2 = +6.9(3) cm-1, with a distribution of E parameters for the S = 2 state. Solid-state circular dichroism (CD) spectra on high-spin complex 1 at room temperature reveal a 2:1 ratio of enantiomers in the chiral conglomerate, and solution CD measurements on the same sample in methanol show that it is stable toward racemization. Solid-state UV-vis absorption spectra on high-spin complex 1 and mixed S = 1/S = 2 sample 5 reveal different intensities at higher energies, in line with the different electronic composition. The statistical prevalence of homochiral crystallization of [Mn(4-OMe-Sal2323)]+ in five lattices with different achiral counterions suggests that the chirality may be directed by the 4-OMe-Sal2323 ligand.

7.
Angew Chem Int Ed Engl ; 61(4): e202114021, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34761504

ABSTRACT

A MnIII spin crossover complex with atypical two-step hysteretic thermal switching at 74 K and 84 K shows rich structural-magnetic interplay and magnetic-field-induced spin state switching below 14 T with an onset below 5 T. The spin states, structures, and the nature of the phase transitions are elucidated via X-ray and magnetization measurements. An unusual intermediate phase containing four individual sites, where 1 / 4 are in a pure low spin state, is observed. The splitting of equivalent sites in the high temperature phase into four inequivalent sites is due to a structural reorganization involving a primary and a secondary symmetry-breaking order parameter that induces a crystal system change from orthorhombic→monoclinic and a cell doubling. Further cooling leads to a reconstructive phase transition and a monoclinic low-temperature phase with two inequivalent low-spin sites. The coupling between the order parameters is identified in the framework of Landau theory.

8.
J Am Chem Soc ; 144(1): 195-211, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34939802

ABSTRACT

Pinned and mobile ferroelastic domain walls are detected in response to mechanical stress in a Mn3+ complex with two-step thermal switching between the spin triplet and spin quintet forms. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy on [MnIII(3,5-diCl-sal2(323))]BPh4 reveal three distinct symmetry-breaking phase transitions in the polar space group series Cc → Pc → P1 → P1(1/2). The transition mechanisms involve coupling between structural and spin state order parameters, and the three transitions are Landau tricritical, first order, and first order, respectively. The two first-order phase transitions also show changes in magnetic properties and spin state ordering in the Jahn-Teller-active Mn3+ complex. On the basis of the change in symmetry from that of the parent structure, Cc, the triclinic phases are also ferroelastic, which has been confirmed by resonant ultrasound spectroscopy. Measurements of magnetoelectric coupling revealed significant changes in electric polarization at both the Pc → P1 and P1 → P1(1/2) transitions, with opposite signs. All these phases are polar, while P1 is also chiral. Remanent electric polarization was detected when applying a pulsed magnetic field of 60 T in the P1→ P1(1/2) region of bistability at 90 K. Thus, we showcase here a rare example of multifunctionality in a spin crossover material where the strain and polarization tensors and structural and spin state order parameters are strongly coupled.

9.
Molecules ; 25(23)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260579

ABSTRACT

Spin state preferences for a cationic Mn3+ chelate complex in four different crystal lattices are investigated by crystallography and SQUID magnetometry. The [MnL1]+ complex cation was prepared by complexation of Mn3+ to the Schiff base chelate formed from condensation of 4-methoxysalicylaldehyde and 1,2-bis(3-aminopropylamino)ethane. The cation was crystallized separately with three polyatomic counterions and in one case was found to cocrystallize with a percentage of unreacted 4-methoxysalicylaldehyde starting material. The spin state preferences of the four resultant complexes [MnL1]CF3SO3·xH2O, (1), [MnL1]PF6·xH2O, (2), [MnL1]PF6·xsal·xH2O, (2b), and [MnL1]BPh4, (3), were dependent on their ability to form strong intermolecular interactions. Complexes (1) and (2), which formed hydrogen bonds between [MnL1]+, lattice water and in one case also with counterion, showed an incomplete thermal spin crossover over the temperature range 5-300 K. In contrast, complex (3) with the BPh4-, counterion and no lattice water, was locked into the high spin state over the same temperature range, as was complex (2b), where inclusion of the 4-methoxysalicylaldehyde guest blocked the H-bonding interaction.


Subject(s)
Manganese/chemistry , Quantum Theory , Schiff Bases/chemistry , Spin Labels , Water/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular
10.
Angew Chem Int Ed Engl ; 59(32): 13305-13312, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32358911

ABSTRACT

Domain wall motion is detected for the first time during the transition to a ferroelastic and spin state ordered phase of a spin crossover complex. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy (RUS) revealed two distinct symmetry-breaking phase transitions in the mononuclear Mn3+ compound [Mn(3,5-diBr-sal2 (323))]BPh4 , 1. The first at 250 K, involves the space group change Cc→Pc and is thermodynamically continuous, while the second, Pc→P1 at 85 K, is discontinuous and related to spin crossover and spin state ordering. Stress-induced domain wall mobility was interpreted on the basis of a steep increase in acoustic loss immediately below the the Pc-P1 transition.

11.
Dalton Trans ; 48(41): 15679-15686, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31512699

ABSTRACT

We present the synthesis, magnetic and photophysical properties of four mononuclear LnIII complexes in two isostructural lattices containing GdIII and ErIII. A heptadentate Schiff base ligand and acetate versus trifluoroacetate were used to synthesise complexes 1-4, among which the two ErIII complexes 2 and 4 exhibit field-induced SIM behaviour with almost similar Ueff values (31.6 K for 2 and 32.7 K for 4). Ab initio calculations show the structure of the low-lying energy states and highlight that there is already significant tunnelling in the ground doublet state, but the application of a weak magnetic field of 0.05 T is sufficient for ac magnetic measurements to suppress tunnelling in the ground state. The calculated main magnetic axes (gZ) of the ground Kramers doublets show small differences between the two ErIII compounds 2 and 4 due to their different ligand fields.

12.
Dalton Trans ; 48(41): 15560-15566, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31342029

ABSTRACT

Structural, magnetic and spectroscopic data of four complex salts, [Mn(napsal2323)]NTf2, 1,[Mn(napsal2323)]ClO4, 2, [Mn(napsal2323)]BF4, 3 and [Mn(napsal2323)]NO3, 4, of the [Mn(napsal2323)]+ complex cation indicate that the Mn3+ ion is stabilized in the rare S = 1 spin triplet form in this ligand sphere. Zero-field splitting values of D = +19.6 cm-1 and |E| = 2.02 cm-1 for complex 1 were obtained by High Field Electron Paramagnetic Resonance (HFEPR) measurements conducted over a range of frequencies. Structural and magnetic data also indicate that co-crystallization of complexes 2 and 3 with 0.5 equivalents of ethanol yields the high spin S = 2 forms of the perchlorate and tetrafluoroborate solvates [Mn(napsal2323)]ClO4·0.5(C2H5OH), 2·0.5EtOH and [Mn(napsal2323)]BF4·0.5(C2H5OH), 3·0.5EtOH.

13.
J Phys Chem B ; 120(23): 5301-11, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27203286

ABSTRACT

A range of liquid rare earth chlorometallate complexes with the alkyl-phosphonium cation, [P666 14](+), has been synthesized and characterized. EXAFS confirmed the predominant liquid-state speciation of the [LnCl6](3-) ion in the series with Ln = Nd, Eu, Dy. The crystal structure of the shorter-alkyl-chain cation analogue [P4444](+) has been determined and exhibits a very large unit cell. The luminescence properties, with visible-light emissions of the liquid Tb, Eu, Pr, and Sm and the NIR emissions for the Nd and Er compounds, were determined. The effective magnetic moments were measured and fitted for the Nd, Tb, Ho, Dy, Gd, and Er samples.

14.
Dalton Trans ; 44(25): 11286-9, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26053484

ABSTRACT

Temperature-dependent switching of paramagnetism of a cobalt(II) complex is observed in an ionic liquid solution. Paramagnetic and thermochromic switching occur simultaneously due to a reversible change in coordination. This reversible switching is possible in the ionic liquid solution, which enables mobility of thiocyanate anions by remaining mobile at low temperatures and acts as an anion reservoir.

15.
ACS Nano ; 6(12): 10808-15, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23186550

ABSTRACT

Nanostructure and molecular orientation play a crucial role in determining the functionality of organic thin films. In practical devices, such as organic solar cells consisting of donor-acceptor mixtures, crystallinity is poor and these qualities cannot be readily determined by conventional diffraction techniques, while common microscopy only reveals surface morphology. Using a simple nondestructive technique, namely, continuous-wave electron paramagnetic resonance spectroscopy, which exploits the well-understood angular dependence of the g-factor and hyperfine tensors, we show that in the solar cell blend of C(60) and copper phthalocyanine (CuPc)-for which X-ray diffraction gives no information-the CuPc, and by implication the C(60), molecules form nanoclusters, with the planes of the CuPc molecules oriented perpendicular to the film surface. This information demonstrates that the current nanostructure in CuPc:C(60) solar cells is far from optimal and suggests that their efficiency could be considerably increased by alternative film growth algorithms.


Subject(s)
Electric Power Supplies , Fullerenes/chemistry , Indoles/chemistry , Nanostructures/chemistry , Organometallic Compounds/chemistry , Solar Energy , Electron Spin Resonance Spectroscopy , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...