Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 11(1): 480, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980599

ABSTRACT

Mutations in the actively expressed, maternal allele of the imprinted KCNK9 gene cause Birk-Barel intellectual disability syndrome (BBIDS). Using a BBIDS mouse model, we identify here a partial rescue of the BBIDS-like behavioral and neuronal phenotypes mediated via residual expression from the paternal Kcnk9 (Kcnk9pat) allele. We further demonstrate that the second-generation HDAC inhibitor CI-994 induces enhanced expression from the paternally silenced Kcnk9 allele and leads to a full rescue of the behavioral phenotype suggesting CI-994 as a promising molecule for BBIDS therapy. Thus, these findings suggest a potential approach to improve cognitive dysfunction in a mouse model of an imprinting disorder.


Subject(s)
Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/metabolism , Histones/metabolism , Intellectual Disability/genetics , Intellectual Disability/metabolism , Muscle Hypotonia/genetics , Muscle Hypotonia/metabolism , Potassium Channels/genetics , Animals , Behavior, Animal , Benzamides , Brain/metabolism , Craniofacial Abnormalities/drug therapy , Disease Models, Animal , Female , Gene Knockdown Techniques , Genomic Imprinting , Histone Deacetylase Inhibitors/pharmacology , Humans , Intellectual Disability/drug therapy , Locus Coeruleus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Hypotonia/drug therapy , Mutation , Phenotype , Phenylenediamines/pharmacology , Potassium Channels/deficiency , Potassium Channels/metabolism , Up-Regulation/drug effects
2.
Mol Hum Reprod ; 25(6): 283-294, 2019 06 06.
Article in English | MEDLINE | ID: mdl-30892608

ABSTRACT

Human spermatogonial stem cells (hSSCs) have potential in fertility preservation of prepubertal boys or in treatment of male adults suffering from meiotic arrest. Prior to therapeutic application, in vitro propagation of rare hSSCs is mandatory. As the published data points to epigenetic alterations in long-term cell culture of spermatogonia (SPG), an initial characterisation of their DNA methylation state is important. Testicular biopsies from five adult normogonadotropic patients were converted into aggregate-free cell suspensions. FGFR3-positive (FGFR3+) SPG, resembling a very early stem cell state, were labelled with magnetic beads and isolated in addition to unlabelled SPG (FGFR3-). DNA methylation was assessed by limiting dilution bisulfite pyrosequencing for paternally imprinted (H19 and MEG3), maternally imprinted (KCNQ1OT1, PEG3, and SNRPN), pluripotency (POU5F1/OCT4 and NANOG), and spermatogonial/hSSC marker (FGFR3, GFRA1, PLZF, and L1TD1) genes on either single cells or pools of 10 cells. Both spermatogonial subpopulations exhibited a methylation pattern largely equivalent to sperm, with hypomethylation of hSSC marker and maternally imprinted genes and hypermethylation of pluripotency and paternally imprinted genes. Interestingly, we detected fine differences between the two spermatogonial subpopulations, which were reflected by an inverse methylation pattern of imprinted genes, i.e. decreasing methylation in hypomethylated genes and increasing methylation in hypermethylated genes, from FGFR3+ through FGFR3- SPG to sperm. Limitations of this study are due to it not being performed on a genome-wide level and being based on previously published regulatory gene regions. However, the concordance of DNA methylation between SPG and sperm implies that hSSC regulation and germ cell differentiation do not occur at the DNA methylation level.


Subject(s)
DNA Methylation/physiology , Spermatogonia/metabolism , Alleles , Cell Differentiation/genetics , Cell Differentiation/physiology , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Humans , Male , Receptor, Fibroblast Growth Factor, Type 3/genetics , Spermatogenesis/genetics , Spermatogenesis/physiology , Spermatozoa/metabolism , Stem Cells/metabolism
3.
Orphanet J Rare Dis ; 13(1): 23, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29373990

ABSTRACT

BACKGROUND: Many of the genetic childhood disorders leading to death in the pre- or neonatal period or during early childhood follow autosomal recessive modes of inheritance and bear specific challenges for genetic counseling and prenatal diagnostics. Parents are carriers but clinically unaffected, and diseases are rare but have recurrence risks of 25% in the same family. Often, affected children (or fetuses) die before a genetic diagnosis can be established, post-mortem analysis and phenotypic descriptions are insufficient and DNA from affected fetuses or children is not available for later analysis. A genetic diagnosis showing biallelic causative mutations is, however, the requirement for targeted carrier testing in parents and prenatal and preimplantation genetic diagnosis in further pregnancies. METHODS: We undertook targeted next-generation sequencing (NGS) for carrier screening of autosomal recessive lethal disorders in 8 consanguineous and 5 non-consanguineous couples with one or more affected children. We searched for heterozygous variants (non-synonymous coding or splice variants) in parents' DNA, using a set of 430 genes known to be causative for rare autosomal recessive diseases with poor prognosis, and then filtering for variants present in genes overlapping in both partners. Putative pathogenic variants were tested for cosegregation in affected fetuses or children where material was available. RESULTS: The diagnosis for the premature death in children was established in 5 of the 13 couples. Out of the 8 couples in which no causative diagnosis could be established 4 consented to undergo further analysis, in two of those a potentially causative variant in a novel candidate gene was identified. CONCLUSIONS: For the families in whom causative variants could be identified, these may now be used for prenatal and preimplantation genetic diagnostics. Our data show that NGS based gene panel sequencing of selected genes involved in lethal autosomal recessive disorders is an effective tool for carrier screening in parents and for the identification of recessive gene defects and offers the possibility of prenatal and preimplantation genetic diagnosis in further pregnancies in families that have experienced deaths in early childhood and /or multiple abortions.


Subject(s)
Genes, Recessive/genetics , High-Throughput Nucleotide Sequencing/methods , Female , Humans , Male , Microarray Analysis/methods , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL