Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Phytomedicine ; 130: 155580, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38810558

ABSTRACT

BACKGROUND: Macrophages exhibit different phenotypes in inflammatory bowel disease (IBD) and promote inflammation or tissue repair depending on their polarization state. Alcohol is a widely used solvent in pharmaceutical formulations, and its consumption is associated with an increased risk of colitis; however, its effects on macrophages in IBD remain poorly understood. PURPOSE: This study aimed to investigate the effect of alcohol on macrophages in dextran sodium sulfate (DSS)-induced colitis and understand the underlying mechanisms. METHODS: DSS-treated C57BL/6 mice were exposed to varying concentrations of alcohol, transient receptor potential vanilloid 1 (TRPV1) antagonist, and 5-aminosalicylic acid. The distal colon was resected, fixed, stained, and histologically analyzed, through hematoxylin and eosin (H&E) staining and immunofluorescence staining. Ratio [Ca2+]i measurements, western blotting, quantitative polymerase chain reaction, cytokine measurements, and RNA sequencing analyses were also performed. Peritoneal macrophages and RAW264.7 cells were used for in vitro experiments, and various assays were performed to evaluate cellular responses, gene expression, and signaling pathways. RESULTS: Alcohol exacerbated DSS-treated mice colitis and promoted the secretion of various inflammatory cytokines from colonic macrophages. Alcohol enhances the calcium ion influx induced by lipopolysaccharide (LPS) in peritoneal macrophages, while the TRPV1 antagonist capsazepine (CPZ) inhibits LPS- and/or alcohol- induced calcium influx in macrophages. Alcohol and LPS activate the MAPK/P38, MAPK/ERK, and NF-κB signaling pathways and induce the macrophage M2b polarization, resulting in the increased expression level of inflammatory cytokines such as Tnf, Il1b, and Il10. Additionally, CPZ can inhibit the facilitatory effects of alcohol or LPS on the abovementioned pathways and inflammatory factors, reversing macrophage M2b polarization and promoting alcohol-induced colitis. The inhibition of nucleotide binding oligomerization domain containing 2 (NOD2) partially suppressed the alcohol and LPS effects on macrophages. CONCLUSION: Alcohol exacerbates experimental colitis and induces M2b polarization of macrophage via TRPV1-MAPK/NF-κB. Our study provides new insights into the potential therapeutic targets for IBD treatment by elucidating the role of TRPV1 in alcohol-exacerbated colitis, using CPZ as a potential therapeutic option. The identification of transient receptor potential ankyrin subtype 1 (TRPA1) as a therapeutic target expands the scope of future research.


Subject(s)
Colitis , Dextran Sulfate , Ethanol , Macrophages , Mice, Inbred C57BL , NF-kappa B , TRPV Cation Channels , Animals , TRPV Cation Channels/metabolism , Mice , Colitis/chemically induced , Colitis/drug therapy , NF-kappa B/metabolism , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Male , Cytokines/metabolism , Signal Transduction/drug effects , Lipopolysaccharides , Colon/drug effects , Colon/pathology , MAP Kinase Signaling System/drug effects , Capsaicin/analogs & derivatives
2.
Int J Biol Macromol ; 266(Pt 2): 131171, 2024 May.
Article in English | MEDLINE | ID: mdl-38574920

ABSTRACT

This study explored the structures of three polysaccharides from Bupleurum chinense DC. (BCPRs), and evaluated their antioxidant and anti-aging properties. The HPGPC and ion chromatography analyses revealed that the molecular weights of the BCPRs ranged from 12.05 to 21.20 kDa, and were primarily composed of rhamnose, arabinose, xylose, galactose, glucose and galacturonic acid. Methylation and NMR studies identified 10 PMAAs, establishing the various backbones of BCPRs 1-3. BCPR-3 demonstrated potent antioxidant activities, including DPPH, ABTS, hydroxy, and superoxide radicals scavenging in vitro. At concentrations between 125 and 500 µg/mL, BCPR-3 increased T-AOC, SOD and GSH-Px activities, while decreasing MDA levels in H2O2-induced SH-SY5Y cells. In addition, RNA-seq results indicated that BCPR-3 considerably downregulated the expression of 49 genes and upregulated five genes compared with the control group. KEGG analysis suggested that these differentially expressed genes (DEGs) were predominantly involved in the TNF and PI3K/Akt signaling pathways. Furthermore, in vivo experiment with Drosophila melanogaster showed that BCPR-3 could extend the average lifespan of flies. In conclusion, polysaccharides from B. chinense exhibited potential antioxidant and anti-aging activities, which could be developed as new ingredients to combat oxidative stress damage and slow the aging process.


Subject(s)
Antioxidants , Bupleurum , Polysaccharides , Reactive Oxygen Species , Signal Transduction , Polysaccharides/pharmacology , Polysaccharides/chemistry , Bupleurum/chemistry , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Humans , Aging/drug effects , Drosophila melanogaster/drug effects , Oxidative Stress/drug effects , Hydrogen Peroxide
3.
Cell Oncol (Dordr) ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436783

ABSTRACT

PURPOSE: Esophageal squamous cell carcinoma (ESCC) is an aggressive disease with a poor prognosis, caused by the inactivation of critical cell growth regulators that lead to uncontrolled proliferation and increased malignancy. Although Serine/Threonine Kinase 3 (STK3), also known as Mammalian STE20-like protein kinase 2 (MST2), is a highly conserved kinase of the Hippo pathway, plays a critical role in immunomodulation, organ development, cellular differentiation, and cancer suppression, its phenotype and function in ESCC require further investigation. In this study, we report for the first time on the role of STK3 kinase and its activation condition in ESCC, as well as the mechanism and mediators of kinase activation. METHODS: In this study, we investigated the expression and clinical significance of STK3 in ESCC. We first used bioinformatics databases and immunohistochemistry to analyze STK3 expression in the ESCC patient cohort and conducted survival analysis. In vivo, we conducted a tumorigenicity assay using nude mouse models to demonstrate the phenotypes of STK3 kinase. In vitro, we conducted Western blot analysis, qPCR analysis, CO-IP, and immunofluorescence (IF) staining analysis to detect molecule expression, interaction, and distribution. We measured proliferation, migration, and apoptosis abilities in ESCC cells in the experimental groups using CCK-8 and transwell assays, flow cytometry, and EdU staining. We used RNA-seq to identify genes that were differentially expressed in ESCC cells with silenced STK3 or FOXO1. We demonstrated the regulatory relationship of the TP53INP1/P21 gene medicated by the STK3-FOXO1 axis using Western blotting and ChIP in vitro. RESULTS: We demonstrate high STK3 expression in ESCC tissue and cell lines compared to esophageal epithelium. Cellular ROS induces STK3 autophosphorylation in ESCC cells, resulting in upregulated p-STK3/4. STK3 activation inhibits ESCC cell proliferation and migration by triggering apoptosis and suppressing the cell cycle. STK3 kinase activation phosphorylates FOXO1Ser212, promoting nuclear translocation, enhancing transcriptional activity, and upregulating TP53INP1 and P21. We also investigated TP53INP1 and P21's phenotypic effects in ESCC, finding that their knockdown significantly increases tumor proliferation, highlighting their crucial role in ESCC tumorigenesis. CONCLUSION: STK3 kinase has a high expression level in ESCC and can be activated by cellular ROS, inhibiting cell proliferation and migration. Additionally, STK3 activation-mediated FOXO1 regulates ESCC cell apoptosis and cell cycle arrest by targeting TP53INP1/P21. Our research underscores the anti-tumor function of STK3 in ESCC and elucidates the mechanism underlying its anti-tumor effect on ESCC.

4.
Cell Death Discov ; 10(1): 102, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413558

ABSTRACT

Substantial evidence attests to the pivotal role of cancer stem cells (CSC) in both tumorigenesis and drug resistance. A member of the forkhead box (FOX) family, FOXC1, assumes significance in embryonic development and organogenesis. Furthermore, FOXC1 functions as an overexpressed transcription factor in various tumors, fostering proliferation, enhancing migratory capabilities, and promoting drug resistance, while maintaining stem-cell-like properties. Despite these implications, scant attention has been devoted to its role in esophageal squamous cell carcinoma. Our investigation revealed a pronounced upregulation of FOXC1 expression in ESCC, correlating with a poor prognosis. The downregulation of FOXC1 demonstrated inhibitory effects on ESCC tumorigenesis, proliferation, and tolerance to chemotherapeutic agents, concurrently reducing the levels of stemness-related markers CD133 and CD44. Further studies validated that FOXC1 induces ESCC stemness by transactivating CBX7 and IGF-1R. Additionally, IGF-1 activated the PI3K/AKT/NF-κB and MEK/ERK/NF-κB pathways through its binding to IGF-1R, thereby augmenting FOXC1 expression. Conversely, suppressing FOXC1 impeded ESCC stemness induced by IGF-1. The presence of a positive feedback loop, denoted by IGF-1-FOXC1-IGF-1R, suggests the potential of FOXC1 as a prognostic biomarker for ESCC. Taken together, targeting the IGF-1-FOXC1-IGF-1R axis emerges as a promising approach for anti-CSC therapy in ESCC.

5.
Cell Death Dis ; 15(1): 91, 2024 01 27.
Article in English | MEDLINE | ID: mdl-38280896

ABSTRACT

Transient receptor potential melastatin 8 (TRPM8) is a cold sensory receptor in primary sensory neurons that regulates various neuronal functions. Substance P (SP) is a pro-inflammatory neuropeptide secreted by the neurons, and it aggravates colitis. However, the regulatory role of TRPM8 in SP release is still unclear. Our study aimed to investigate TRPM8's role in SP release from primary sensory neurons during colitis and clarify the effect of SP on colonic epithelium. We analyzed inflammatory bowel disease patients' data from the Gene Expression Omnibus dataset. Dextran sulfate sodium (DSS, 2.5%)-induced colitis in mice, mouse dorsal root ganglion (DRG) neurons, ND7/23 cell line, and mouse or human colonic organoids were used for this experiment. Our study found that TRPM8, TAC1 and WNT3A expression were significantly correlated with the severity of ulcerative colitis in patients and DSS-induced colitis in mice. The TRPM8 agonist (menthol) and the SP receptor antagonist (Aprepitant) can attenuate colitis in mice, but the effects were not additive. Menthol promoted calcium ion influx in mouse DRG neurons and inhibited the combination and phosphorylation of PKAca from the cAMP signaling pathway and GSK-3ß from the Wnt/ß-catenin signaling pathway, thereby inhibiting the effect of Wnt3a-driven ß-catenin on promoting SP release in ND7/23 cells. Long-term stimulation with SP inhibited proliferation and enhanced apoptosis in both mouse and human colonic organoids. Conclusively, TRPM8 inhibits SP release from primary sensory neurons by inhibiting the interaction between PKAca and GSK-3ß, thereby inhibiting the role of SP in promoting colonic epithelial apoptosis and relieving colitis.


Subject(s)
Colitis , TRPM Cation Channels , Humans , Mice , Animals , Substance P/adverse effects , Substance P/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Menthol/pharmacology , Colitis/genetics , Sensory Receptor Cells/metabolism , Epithelium/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Dextran Sulfate , Mice, Inbred C57BL , Ganglia, Spinal/metabolism , Membrane Proteins/metabolism
6.
IEEE Trans Med Imaging ; 43(1): 275-285, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37549070

ABSTRACT

Image-based 2D/3D registration is a critical technique for fluoroscopic guided surgical interventions. Conventional intensity-based 2D/3D registration approa- ches suffer from a limited capture range due to the presence of local minima in hand-crafted image similarity functions. In this work, we aim to extend the 2D/3D registration capture range with a fully differentiable deep network framework that learns to approximate a convex-shape similarity function. The network uses a novel Projective Spatial Transformer (ProST) module that has unique differentiability with respect to 3D pose parameters, and is trained using an innovative double backward gradient-driven loss function. We compare the most popular learning-based pose regression methods in the literature and use the well-established CMAES intensity-based registration as a benchmark. We report registration pose error, target registration error (TRE) and success rate (SR) with a threshold of 10mm for mean TRE. For the pelvis anatomy, the median TRE of ProST followed by CMAES is 4.4mm with a SR of 65.6% in simulation, and 2.2mm with a SR of 73.2% in real data. The CMAES SRs without using ProST registration are 28.5% and 36.0% in simulation and real data, respectively. Our results suggest that the proposed ProST network learns a practical similarity function, which vastly extends the capture range of conventional intensity-based 2D/3D registration. We believe that the unique differentiable property of ProST has the potential to benefit related 3D medical imaging research applications. The source code is available at https://github.com/gaocong13/Projective-Spatial-Transformers.


Subject(s)
Imaging, Three-Dimensional , Pelvis , Imaging, Three-Dimensional/methods , Fluoroscopy/methods , Software , Algorithms
7.
Article in English | MEDLINE | ID: mdl-38013746

ABSTRACT

Normal Pressure Hydrocephalus (NPH) is a brain disorder associated with ventriculomegaly. Accurate segmentation of the ventricle system into its sub-compartments from magnetic resonance images (MRIs) could help evaluate NPH patients for surgical intervention. In this paper, we modify a 3D U-net utilizing probability maps to perform accurate ventricle parcellation, even with grossly enlarged ventricles and post-surgery shunt artifacts, from MRIs. Our method achieves a mean dice similarity coefficient (DSC) on whole ventricles for healthy controls of 0.864 ± 0.047 and 0.961 ± 0.024 for NPH patients. Furthermore, with the benefit of probability maps, the proposed method provides superior performance on MRI with grossly enlarged ventricles (mean DSC value of 0.965 ± 0.027) or post-surgery shunt artifacts (mean DSC value of 0.964 ± 0.031). Results indicate that our method provides a high robust parcellation tool on the ventricular systems which is comparable to other state-of-the-art methods.

8.
Article in English | MEDLINE | ID: mdl-38013948

ABSTRACT

Normal pressure hydrocephalus (NPH) is a brain disorder associated with enlarged ventricles and multiple cognitive and motor symptoms. The degree of ventricular enlargement can be measured using magnetic resonance images (MRIs) and characterized quantitatively using the Evan's ratio (ER). Automatic computation of ER is desired to avoid the extra time and variations associated with manual measurements on MRI. Because shunt surgery is often used to treat NPH, it is necessary that this process be robust to image artifacts caused by the shunt and related implants. In this paper, we propose a 3D regions-of-interest aware (ROI-aware) network for segmenting the ventricles. The method achieves state-of-the-art performance on both pre-surgery MRIs and post-surgery MRIs with artifacts. Based on our segmentation results, we also describe an automated approach to compute ER from these results. Experimental results on multiple datasets demonstrate the potential of the proposed method to assist clinicians in the diagnosis and management of NPH.

9.
Int J Biol Macromol ; 253(Pt 5): 127231, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37804899

ABSTRACT

To address the environmental and food contamination issues caused by plastics and microorganisms, antimicrobial films using natural polymers has attracted enormous attention. In this work, we proposed a green, convenient and fast approach to prepare antimicrobial films from chitosan (CS), bacterial cellulose (BC) and ε-polylysine (ε-PL). The effects of different concentrations of ε-PL (0 %, 0.25 %, 0.5 %, 0.75 %, 1 %, w/v) on the physicochemical properties and antibacterial activity of composite films (CS-DABC-x%PL) were systematically investigated. Furthermore, a comprehensive comparison with purely physically mixed CS-BC-x%PL films provides a deeper understanding of the subject matter. Characterization tests of the films were conducted using scanning electron microscope (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results suggested that the incorporation of 0.5 % ε-PL reduced the water solubility of the composite film by 19.82 %, along with improved the tensile strength and thermal stability by 37.31 % and 28.54 %. As ε-PL concentration increased to 1 %, the antibacterial performance of the films gradually enhanced. Additionally, the CS-DABC-0.5%PL film demonstrated effectiveness in delaying the deterioration of tilapia. These findings imply that this novel green packaging material holds significant potential in food preservation due to its promising antibacterial properties.


Subject(s)
Anti-Infective Agents , Chitosan , Chitosan/chemistry , Cellulose/chemistry , Polylysine/pharmacology , Polylysine/chemistry , Food Packaging , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Food Preservation
10.
Adv Sci (Weinh) ; 10(29): e2300864, 2023 10.
Article in English | MEDLINE | ID: mdl-37705061

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers because of its robust aggressive phenotype and chemoresistance. TAO kinase belongs to mitogen-activated protein kinases, which mediate drug resistance in multiple cancers. However, the role of TAO kinase in ESCC progression and chemoresistance has never been explored. Here, it is reported that TAOK3 augments cell autophagy and further promotes ESCC progression and chemoresistance. Mechanistically, TAOK3 phosphorylates KMT2C at S4588 and strengthens the interaction between KMT2C and ETV5. Consequently, the nuclear translocation of KMT2C is increased, and the transcription of autophagy-relevant gene IRGM is further upregulated. Additionally, the inhibitor SBI-581 can significantly suppress cell autophagy mediated by TAOK3 and synergizes with cisplatin to treat ESCC in vitro and in vivo.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Esophageal Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , Drug Resistance, Neoplasm , Autophagy/physiology , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/therapeutic use
11.
ACS Appl Mater Interfaces ; 15(29): 34332-34342, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37433119

ABSTRACT

Wearable electrochemical sensors provide means to detect molecular-level information from the biochemical markers in biofluids for physiological health evaluation. However, a high-density array is often required for multiplexed detection of multiple markers in complex biofluids, which is challenging with low-cost fabrication methods. This work reports the low-cost direct laser writing of porous graphene foam as a flexible electrochemical sensor to detect biomarkers and electrolytes in sweat. The resulting electrochemical sensor exhibits high sensitivity and low limit of detection for various biomarkers (e.g., the sensitivity of 6.49/6.87/0.94/0.16 µA µM-1 cm-2 and detection limit of 0.28/0.26/1.43/11.3 µM to uric acid/dopamine/tyrosine/ascorbic acid) in sweat. The results from this work open up opportunities for noninvasive continuous monitoring of gout, hydration status, and drug intake/overdose.


Subject(s)
Biosensing Techniques , Graphite , Wearable Electronic Devices , Sweat , Porosity , Lasers , Biomarkers , Writing , Electrochemical Techniques/methods
12.
Cancer Sci ; 114(8): 3270-3286, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37248653

ABSTRACT

Homeobox A7 (HOXA7) plays essential roles in multiple malignancies and was reported to be overexpressed in esophageal squamous cell carcinoma (ESCC). However, its functions in the ESCC tumor microenvironment remain to be explored. In this study, we showed that HOXA7 was overexpressed in ESCC among HOXA family members and correlated with tumor-associated macrophage (TAM) infiltration both in The Cancer Genome Atlas database and ESCC clinical samples. Moreover, transactivation of C-C motif chemokine ligand 2 (CCL2) by HOXA7 was identified (real-time quantitative PCR [RT-qPCR], western blot analysis, ELISA, and ChIP-qPCR), which was detected to drive chemotaxis and M2 polarization of macrophages both in vitro (Transwell assay) and in vivo (xenograft tumors models). In addition, CCL2 triggers macrophage expression of epidermal growth factor (EGF) (RT-qPCR and ELISA), which promotes tumor proliferation and metastasis by activating its receptor EGFR. In addition, EGF-induced ESCC cell proliferation and migration can be abrogated by HOXA7 knockdown (CCK-8 proliferation assay, EdU fluorescence, and Transwell assay). These results indicate a novel mechanistic role of HOXA7 in the cross-talk between ESCC and TAMs, which could be an underlying therapeutic target for ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/pathology , Epidermal Growth Factor/metabolism , Tumor-Associated Macrophages/metabolism , Genes, Homeobox , Ligands , Transcription Factors/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment
13.
ArXiv ; 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37033461

ABSTRACT

Data-driven thalamic nuclei parcellation depends on high-quality manual annotations. However, the small size and low contrast changes among thalamic nuclei, yield annotations that are often incomplete, noisy, or ambiguously labelled. To train a robust thalamic nuclei parcellation model with noisy annotations, we propose a label propagation algorithm based on random walker to refine the annotations before model training. A two-step model was trained to generate first the whole thalamus and then the nuclei masks. We conducted experiments on a mild traumatic brain injury~(mTBI) dataset with noisy thalamic nuclei annotations. Our model outperforms current state-of-the-art thalamic nuclei parcellations by a clear margin. We believe our method can also facilitate the training of other parcellation models with noisy labels.

14.
World J Surg Oncol ; 21(1): 67, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36849953

ABSTRACT

BACKGROUND: As an important component of accelerated rehabilitation surgery, goal-directed fluid therapy (GDT) is one of the optimized fluid therapy strategies and is closely related to perioperative complications and mortality. This article aimed to study the effect of combining plasma colloid osmotic pressure (COP) with stroke volume variation (SVV) as a target for intraoperative GDT for postoperative pulmonary complications in older patients undergoing major abdominal surgery. METHODS: In this study, older patients (n = 100) undergoing radical resection of gastroenteric tumors were randomized to three groups: Group C (n1 = 31) received a conventional infusion regimen, Group S1 (n2 = 34) received GDT based on SVV, and Group S2 (n3 = 35) received GDT based on SVV and COP. The results were recorded, including the lung injury score (LIS); PaO2/FiO2 ratio; lactic acid value at the times of beginning (T0) and 1 h (T1), 2 h (T2), and 3 h (T3) after liquid infusion in the operation room; the total liquid infusion volume; infusion volumes of crystalline and colloidal liquids; urine production rate; pulmonary complications 7 days after surgery; and the severity grading of postoperative pulmonary complications. RESULTS: The patients in the S2 group had fewer postoperative pulmonary complications than those in the C group (P < 0.05) and the proportion of pulmonary complications of grade 1 and higher than grade 2 in S2 group was significantly lower than that in C group (P <0.05); the patients in the S2 group had a higher PaO2/FiO2 ratio than those in the C group (P < 0.05), lower LIS than those in the S1 and C groups (P < 0.05), less total liquid infusion than those in the C group (P < 0.05), and more colloidal fluid infusion than those in the S1 and C groups (P < 0.05). CONCLUSION: The findings of our study show that intraoperative GDT based on COP and SVV can reduce the incidence of pulmonary complications and conducive to shortening the hospital stay in older patients after gastrointestinal surgery. TRIAL REGISTRATION: Chinese Clinical Trial. no. ChiCTR2100045671. Registry at www.chictr.org.cn on April 20, 2021.


Subject(s)
Abdomen , Goals , Humans , Aged , Osmotic Pressure , Abdomen/surgery , Postoperative Complications/etiology , Fluid Therapy/adverse effects , Colloids
15.
Front Oncol ; 12: 957966, 2022.
Article in English | MEDLINE | ID: mdl-36106123

ABSTRACT

Background: Cuproptosis is a copper-triggered modality of mitochondrial cell death and cuproptosis process may play important roles in gastric cancer development. However, little is known about cuproptosis-related lncRNAs in gastric adenocarcinoma (STAD). This study is aimed to investigate the potential prognostic signatures of cuproptosis-related lncRNAs in STAD. Methods: The Cancer Genome Atlas (TCGA) database were used to obtain gene expression profiles, clinicopathological, and OS information for STAD. Cuproptosis-related genes were collected based on previous studies and cuproptosis-related lncRNAs were screened out by co-expression analysis. The nomogram constructed by Cox regression analysis with the minimum absolute contraction and selection operator (lasso) algorithm. In addition, the potential response of ICB therapy and immune evasion incidence were estimated with Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Immune checkpoint expressions associated with risk scores were also analyzed. The correlation of immune checkpoint CD209 and HAVCR2 expressions associated with risk scores were experimentally testified by RT-qPCR, Western Blot, and IHC. Results: Patients were classified into high-risk and low-risk groups based on the risk score calculated in this model. The Kaplan-Meier survival curve analysis revealed that the high-risk group was associated with poor prognosis. Multivariate Cox regression analysis suggested that this lncRNA prediction model was an independent risk factor affecting the OS rate. Furthermore, ROC curve indicates that the nomogram was superior to traditional clinicopathological features in predicting STAD prognosis. Finally, functional enrichment analysis and immune checkpoint investigation revealed that the nomogram is notably associated with cholesterol metabolism and immune functions, RT-qPCR and Western Blotting demonstrated the co-expression relationship of LINC01150 with CD209 and HAVCR2. Conclusion: A novel cuproptosis-related lncRNAs signature impacts on the prognosis and immunological features of GC.

16.
Acta Biochim Biophys Sin (Shanghai) ; 54(6): 820-827, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35713319

ABSTRACT

Antibodies are important immune molecules that are elicited by B cells to protect our bodies during viral infections or vaccinations. In humans, the antibody repertoire is diversified by programmed DNA lesion processes to ensure specific and high affinity binding to various antigens. Broadly neutralizing antibodies (bnAbs) are antibodies that have strong neutralizing activities against different variants of a virus. bnAbs such as anti-HIV bnAbs often have special characteristics including insertions and deletions, long complementarity determining region 3 (CDR3), and high frequencies of mutations, often at improbable sites of the variable regions. These unique features are rare mutational outcomes that are acquired during antibody diversification processes. In this review, we will discuss possible mechanisms that generate these rare antibody mutational outcomes. The understanding of the mechanisms that generate these rare mutational outcomes during antibody diversification will have implications in vaccine design strategies to elicit bnAbs.


Subject(s)
Complementarity Determining Regions , Vaccines , Antibodies , Broadly Neutralizing Antibodies , Humans , Mutation
17.
Front Genet ; 13: 844141, 2022.
Article in English | MEDLINE | ID: mdl-35480311

ABSTRACT

Background: Ischemic stroke is a highly complex disorder. This study aims to identify novel methylation changes in ischemic stroke. Methods: We carried out an epigenome-wide study of ischemic stroke using an Infinium HumanMethylation 850K array (cases:controls = 4:4). 10 CpG sites in 8 candidate genes from gene ontology analytics top-ranked pathway were selected to validate 850K BeadChip results (cases:controls = 20:20). We further qualified the methylation level of promoter regions in 8 candidate genes (cases:controls = 188:188). Besides, we performed subgroup analysis, dose-response relationship and diagnostic prediction polygenic model of candidate genes. Results: In the discovery stage, we found 462 functional DNA methylation positions to be associated with ischemic stroke. Gene ontology analysis highlighted the "calcium-dependent cell-cell adhesion via plasma membrane cell adhesion molecules" item, including 8 candidate genes (CDH2/PCDHB10/PCDHB11/PCDHB14/PCDHB16/PCDHB3/PCDHB6/PCDHB9). In the replication stage, we identified 5 differentially methylated loci in 20 paired samples and 7 differentially methylated genes (CDH2/PCDHB10/PCDHB11/PCDHB14/PCDHB16/PCDHB3/PCDHB9) in 188 paired samples. Subgroup analysis showed that the methylation level of above 7 genes remained significantly different in the male subgroup, large-artery atherosclerosis subgroup and right hemisphere subgroup. The methylation level of each gene was grouped into quartiles, and Q4 groups of the 7 genes were associated with higher risk of ischemic stroke than Q1 groups (p < 0.05). Besides, the polygenic model showed high diagnostic specificity (0.8723), sensitivity (0.883), and accuracy (0.8777). Conclusion: Our results demonstrate that DNA methylation plays a crucial part in ischemic stroke. The methylation of these 7 genes may be potential diagnostic biomarker for ischemic stroke.

18.
Gastric Cancer ; 25(3): 527-541, 2022 05.
Article in English | MEDLINE | ID: mdl-35094168

ABSTRACT

BACKGROUND: Increasing evidence indicates that leucine-rich-alpha-2-glycoprotein 1 (LRG1) is associated with multiple malignancies, but whether it participates in gastric cancer (GC) angiogenesis remains unclear. METHODS: The expression levels of LRG1 were assessed in GC samples. Endothelial tube formation analysis, HUVEC migration assay, chorioallantoic membrane assay (CAM), and xenograft tumor model were used to investigate the effect of LRG1 on angiogenesis in gastric cancer. The involvement of activating transcription factor 3 (ATF3) was analyzed by chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assay. Western blot and enzyme-linked immunosorbent assay were performed to measure the SRC/STAT3/VEGFA pathway. RESULTS: LRG1 was overexpressed in GC tissues and associated with cancer angiogenesis. In addition, LRG1 markedly promoted GC cell proliferation in vitro and in vivo. Moreover, overexpression of LRG1 could stimulate GC angiogenesis in vitro and in vivo. Then, we identified ATF3 promotes the transcription of LRG1 and is a positive regulator of angiogenesis. Additionally, LRG1 could activate VEGFA expression via the SRC/STAT3/ VEGFA pathway in GC cells, thus contributing to the angiogenesis of GC. CONCLUSIONS: The present study suggests LRG1 plays a crucial role in the regulation of angiogenesis in GC and could be a potential therapeutic target for GC.


Subject(s)
Activating Transcription Factor 3 , Stomach Neoplasms , Activating Transcription Factor 3/metabolism , Cell Proliferation , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation, Neoplastic , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Neovascularization, Pathologic/genetics , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
19.
J Stroke Cerebrovasc Dis ; 29(12): 105394, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33096493

ABSTRACT

BACKGROUND: Previous studies indicate that the levels of d-dimer and blood lipids at admission affect the prognosis of patients with acute ischemic stroke (AIS), however, whether there is a dose-response effect of d-dimer on prognosis, or a combined effect of d-dimer with blood lipids on prognosis, remains unclear. METHODS: In this prospective cohort study, 1485 AIS patients were recruited. All participants received medical care within 24 h from the onset of stroke, the level of d-dimer and related indices were measured at admission. Then, National Institutes of Health Stroke Scale (NIHSS) scores were obtained at the time of admission and discharge. Afterwards, 3-, 6- and 12- month follow-up was conducted to obtain Modified Rankin Scale (mRS) scores after discharge. RESULTS: A high level of d-dimer at admission was associated with clinical outcome of AIS, after adjusting other relevant factors, with an OR (95%CI) of 2.934(1.914-4.500), 3.052(1.912-4.872), 3.306(1.873-5.835) and 2.828(1.447-5.527) at discharge, at 3-, 6-, and 12-month follow-up respectively, a dose-response effect was observed during follow-up (p = 0.00001). When d-dimer was combined with total cholesterol (TC), after adjusting other relevant factors, OR (95%CI) was 2.799 (1.708-4.587), 2.473 (1.475-4.147), 2.381 (1.333-4.255), and 2.619 (1.320-5.193), at each follow-up period respectively. When combined with low-density lipoprotein (LDL), OR (95%CI) was 3.105 (1.729-5.577), 3.280 (1.762-6.104), 2.744 (1.344-5.604), and 4.400 (1.883-10.282), respectively. CONCLUSIONS: D-dimer levels at admission may predict the prognosis of AIS patients in a dose-response pattern. Moreover, d-dimer combined with TC or LDL predict prognosis of AIS.


Subject(s)
Brain Ischemia/blood , Fibrin Fibrinogen Degradation Products/analysis , Lipids/blood , Stroke/blood , Aged , Biomarkers/blood , Brain Ischemia/diagnosis , Brain Ischemia/therapy , Female , Functional Status , Humans , Male , Middle Aged , Patient Admission , Prospective Studies , Recovery of Function , Stroke/diagnosis , Stroke/therapy , Time Factors , Treatment Outcome
20.
Thromb Res ; 194: 142-149, 2020 10.
Article in English | MEDLINE | ID: mdl-32788106

ABSTRACT

BACKGROUND: D-dimer level and platelet count (PC) have been reported separately as significant independent predictors of Acute Ischemic Stroke (AIS). Here, we aimed to investigate the combined prognostic value of abnormal D-dimer level and PC as defined for specific in-hospital and long-term outcomes in AIS patients. METHODS: A total of 1468 patients admitted for ischemic stroke within 24 h of symptom onset from April 1, 2016 to November 31, 2019 at the Department of Neurology, the First Affiliated Hospital of Harbin Medical University were included in the final analysis. Eligible subjects were divided into four groups in terms of their levels of D-dimer and PC: DD-PC- (normal D-dimer level and normal PC), DD-PC+ (normal D-dimer level and abnormal PC), DD+PC- (higher D-dimer level and normal PC), and DD+PC+ (higher D-dimer level and abnormal PC). Logistic regression model and multinomial logit model were used to estimate the combined effect of D-dimer level and PC on in-hospital outcomes including discharge outcome and early neurological changes, and poor outcomes at 3, 6 and 12 months. RESULTS: DD+PC+ was found to be associated with the risk of in-hospital mortality (adjusted odds ratio [OR], 6.904; 95% confidence interval [CI], 2.781-17.144) and 3-month mortality (adjusted OR, 5.455; 95% CI, 2.019-14.743) compared with DD-PC-. Combination of the two indicators significantly improved the independent predictive value for functional outcomes, including early neurological deterioration (END) (OR, 3.622; 95% CI, 1.732-7.573) with threshold of at least 4-point increase on NIHSS, discharge outcome (OR, 2.713; 95% CI, 1.421-5.177); mRS of 0-1 point (OR, 0.409; 95% CI, 0.211-0.792), mRS of 0-2 points (OR, 0.234; 95% CI, 0.118, 0.461), and higher mRS-shift (OR, 2.379; 95% CI, 1.237-4.576) at 3 months; unfavorable outcome at 3 months (OR, 4.280; 95% CI, 2.169-8.446), 6 months (OR, 3.297; 95% CI, 1.452-7.488) and 12 months (OR, 4.157; 95% CI, 1.598-10.816). While comparatively weaker statistical significance was shown in DD+PC- and no correlation was found between adverse outcomes and DD-PC+. Similarly, patients with abnormal D-dimer level and PC were less likely to reach the status of stable or improving. CONCLUSIONS: Combination of D-dimer level and PC may have more significant prognostic value on END, in-hospital mortality, discharge outcome, and long-term outcomes than either index of D-dimer level or PC alone in AIS patients.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Brain Ischemia/diagnosis , Fibrin Fibrinogen Degradation Products , Humans , Platelet Count , Prognosis , Stroke/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...