Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 512-517, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38802913

ABSTRACT

Glyceryl phenylbutyrate (GPB) serves as a long-term management medication for Ornithine transcarbamylase deficiency (OTCD), effectively controlling hyperammonemia, but there is a lack of experience in using this medicine in China. This article retrospectively analyzes the case of a child diagnosed with OTCD at Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, including a review of related literature. After diagnosis, the patient was treated with GPB, followed by efficacy follow-up and pharmacological monitoring. The 6-year and 6-month-old male patient exhibited poor speech development, disobedience, temper tantrums, and aggressive behavior. Blood ammonia levels peaked at 327 µmol/L; urine organic acid analysis indicated elevated uracil levels; cranial MRI showed extensive abnormal signals in both cerebral hemispheres. Genetic testing revealed de novo mutation in the OTC gene (c.241T>C, p.S81P). Blood ammonia levels were approximately 43, 80, and 56 µmol/L at 1, 2, and 3 months after starting GPB treatment, respectively. During treatment, blood ammonia was well-controlled without drug-related adverse effects. The patient showed improvement in developmental delays, obedience, temperament, and absence of aggressive behavior.


Subject(s)
Ornithine Carbamoyltransferase Deficiency Disease , Phenylbutyrates , Humans , Male , Ornithine Carbamoyltransferase Deficiency Disease/drug therapy , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Phenylbutyrates/therapeutic use , Child , Glycerol/analogs & derivatives
2.
BMC Endocr Disord ; 24(1): 8, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212772

ABSTRACT

BACKGROUND: ABCC8 variants can cause hyperinsulinemia by activating or deactivating gene expression. This study used targeted exon sequencing to investigate genetic variants of ABCC8 and the associated phenotypic features in Chinese patients with hyperinsulinemic hypoglycemia (HH). METHODS: We enrolled eight Chinese children with HH and analyzed their clinical characteristics, laboratory results, and genetic variations. RESULTS: The age at presentation among the patients ranged from neonates to 0.6 years old, and the age at diagnosis ranged from 1 month to 5 years, with an average of 1.3 ± 0.7 years. Among these patients, three presented with seizures, and five with hypoglycemia. One patient (Patient 7) also had microcephaly. All eight patients exhibited ABCC8 abnormalities, including six missense mutations (c. 2521 C > G, c. 3784G > A, c. 4478G > A, c. 4532T > C, c. 2669T > C, and c. 331G > A), two deletion-insertion mutations (c. 3126_3129delinsTC and c. 3124_3126delins13), and one splicing mutation (c. 1332 + 2T > C). Two of these mutations (c. 3126_3129delinsTC and c. 4532T > C) are novel. Six variations were paternal, two were maternal, and one was de novo. Three patients responded to diazoxide and one patient responded to octreotide treatment. All there patients had diazoxide withdrawal with age. Two patients (patients 3 and 7) were unresponsive to both diazoxide and octreotide and had mental retardation. CONCLUSIONS: Gene analysis can aid in the classification, treatment, and prognosis of children with HH. In this study, the identification of seven known and two novel variants in the ABCC8 gene further enriched the variation spectrum of the gene.


Subject(s)
Congenital Hyperinsulinism , Infant, Newborn , Child , Humans , Congenital Hyperinsulinism/drug therapy , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/diagnosis , Diazoxide/therapeutic use , Octreotide/therapeutic use , Mutation , China/epidemiology , Sulfonylurea Receptors/genetics
3.
Orphanet J Rare Dis ; 18(1): 284, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37697378

ABSTRACT

BACKGROUND: Cardio-facio-cutaneous (CFC) syndrome is a RASopathy subtype that presents with unique craniofacial dysmorphology, congenital heart disease, dermatologic abnormalities, growth retardation, and intellectual disability. This study describes the phenotypic spectrum of CFC in China and its association with CFC syndrome gene variants. RESULTS: Twenty Chinese CFC patients, aged 0.6-9.5 years old, were included in this study and their clinical phenotypic spectrum was compared with that of 186 patients with CFC from non-Chinese ethnicities. All 20 Chinese patients with CFC carried de novo heterozygous BRAF, MAP2K1, and MAP2K2 variants. Two novel variants were detected and consistently predicted to be deleterious using bioinformatic tools. The clinical features of CFC in the Chinese patients included hypertrophic cardiomyopathy (2/20, 10%), pulmonary valve stenosis (2/20, 10%), curly or sparse hair (7/20, 35%), epilepsy (1/20, 5%), and hypotonia (10/20, 50%); these features were less frequently observed in Chinese patients than non-Chinese patients (p < 0.05). In contrast, feeding difficulties (19/20, 95%) were more frequently observed in the Chinese patients. Absent eyebrows and severe short stature were more common in patients with BRAF variants than in those with MAP2K1/2 variants. Facial recognition software was used to recognize most CFC patients using artificial intelligence. CONCLUSION: This study identified novel and common variants in our cohort of 20 Chinese patients with CFC. We uncovered differences in clinical features between Chinese and non-Chinese patients and detected genotype-phenotype correlations among the BRAF and MAP2K1/2 variant subgroups. This is the largest cohort of Chinese CFC patients to our knowledge, providing new insights into a subtype of RASopathy.


Subject(s)
Ectodermal Dysplasia , Heart Defects, Congenital , Humans , Infant , Child, Preschool , Child , Artificial Intelligence , Proto-Oncogene Proteins B-raf/genetics , Heart Defects, Congenital/genetics , Ectodermal Dysplasia/genetics
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(8): 998-1003, 2023 Aug 10.
Article in Chinese | MEDLINE | ID: mdl-37532501

ABSTRACT

OBJECTIVE: To explore the clinical characteristics and genetic basis of a child with Teebi hypertelorism syndrome 1 (TBHS1). METHODS: A child with TBHS1 who was admitted to the Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine on July 13, 2021 was selected as the study subject. Clinical data of the child was collected. Peripheral blood samples of the child and his parents were collected and subjected to whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing and bioinformatic analysis. RESULTS: The child, a 13-year-old male, had manifested delayed growth and development. WES results revealed that he has harbored a heterozygous c.1244A>G variant of the SPECC1L gene, which was verified to be de novo in origin. The variant has not been included in the HGMD and gnomAD databases. As predicted by online software including PolyPhen-2, SIFT, and Mutation Taster, the variant may affect the function of protein domain. And PyMOL software has predicted that the structural stability of SPECC1L protein (p.Gln415Arg) might be reduced. Based on the guidelines of the American College of Medical Genetics and Genomics (ACMG), the variant was classified as pathogenic (PM6+PM1+PP4+PM2_Supporting+PP3). CONCLUSION: The heterozygous c.1244A>G variant of the SPECC1L gene probably underlay the TBHS1 in this child. Above finding has expanded the genotypic and phenotypic spectrum of the SPECC1L gene and provided a basis for the clinical diagnosis of this child.


Subject(s)
Computational Biology , Genomics , Adolescent , Humans , Male , China , Genotype , Mutation
5.
Mol Genet Genomic Med ; 11(9): e2235, 2023 09.
Article in English | MEDLINE | ID: mdl-37469238

ABSTRACT

BACKGROUND: Primary ciliary dyskinesia (PCD) is a type of ciliary dyskinesia that is usually caused by autosomal recessive inheritance and can manifest as recurrent respiratory infections, bronchiectasis, infertility, laterality defects, and chronic otolaryngological disease. Although ependymal cilia, which affect the flow of cerebrospinal fluid in the central nervous system, have much in common with respiratory cilia in terms of structure and function, hydrocephalus is rarely associated with PCD. Recently, variants of Forkhead box J1 (FOXJ1) have been found to cause PCD combined with hydrocephalus in a de novo, autosomal dominant inheritance pattern. METHODS: We performed DNA extraction, whole-exome sequencing (WES) analysis, and mutation analysis of FOXJ1 and analyzed the patient's clinical and genetic data. RESULTS: The patient was a 4-year-old female exhibiting normal growth and development. At 3 years and 2 months of age, the patient experienced hand shaking and weakness in the lower limbs. Cardiac ultrasonography showed a right-sided heart, and cranial magnetic resonance imaging showed obstructive hydrocephalus. The nasal nitric oxide level was 54 nL/min. WES indicated a de novo, heterozygous variant of FOXJ1, c.734-735 ins20. This variant was novel, not included in the Human Gene Mutation and Genome Aggregation Database, and likely pathogenic according to the American College of Medical Genetics and Genomics, causing earlier termination of amino acid translation. The patient underwent a neuroendoscopic third ventriculostomy after the diagnosis of obstructive hydrocephalus. Six months after the operation, the patient's motor deficits had improved. CONCLUSION: This is the first report of a de novo, autosomal dominant pattern of FOXJ1 causing PCD combined with hydrocephalus in China. The patient's clinical symptoms were similar to those previously reported. WES confirmed that a novel variant of FOXJ1 was the cause of the PCD combined with hydrocephalus, expanding the spectrum of the genotypes associated with this condition. Physicians should be aware of the correlation of hydrocephalus and PCD and test for FOXJ1 variants.


Subject(s)
Ciliary Motility Disorders , Hydrocephalus , Child, Preschool , Female , Humans , Ciliary Motility Disorders/genetics , Ciliary Motility Disorders/pathology , East Asian People , Forkhead Transcription Factors/genetics , Genotype , Hydrocephalus/genetics , Mutation
6.
Mol Genet Genomic Med ; 10(6): e1951, 2022 06.
Article in English | MEDLINE | ID: mdl-35434947

ABSTRACT

BACKGROUND: Mosaic variegated aneuploidy (MVA) syndrome is a rare, autosomal recessive genetic disease. Here, we report an ultra-rare case of MVA syndrome associated with a CEP57 variant. METHODS: We retrospectively analyzed the clinical data of a 9-year-old female patient and surveyed her family members. Whole-exome sequencing and karyotype analysis were performed; suspected mutations were verified using Sanger sequencing. RESULTS: The patient presented with intrauterine growth restriction, short stature, microcephaly, facial dysmorphism, brachydactyly, and small teeth, and she showed unsatisfactory response to GH replacement therapy. Laboratory tests revealed high insulin-like growth factor-1 levels. Karyotype analysis of the peripheral blood showed mosaic variegated aneuploidies. Whole-exome and Sanger sequencing revealed a novel homozygous nonsense variant, NM_014679.4: c.312 T > G, in CEP57 that leads to translation termination (p.Tyr104*). The parents were heterozygous carriers of the identified variant. CONCLUSION: This study presents an ultra-rare case of CEP57-driven MVA syndrome, identifying a novel homozygous nonsense variant of CEP57 (p.Tyr104*). Our findings enrich the CEP57 mutational spectrum and emphasize the importance of genetic testing in patients with microcephaly and short stature. Furthermore, we conclude that growth hormone treatment is ineffective in such patients.


Subject(s)
Brachydactyly , Dwarfism , Microcephaly , Aneuploidy , Child , China , Chromosome Disorders , Dwarfism/genetics , Female , Humans , Microcephaly/genetics , Microtubule-Associated Proteins/genetics , Mosaicism , Nuclear Proteins/genetics , Retrospective Studies
7.
Front Genet ; 13: 808919, 2022.
Article in English | MEDLINE | ID: mdl-35211159

ABSTRACT

Alström syndrome (ALMS) is a rare inherited metabolic disease and ciliopathy. Large cohorts of ALMS are lacking around the world. Detailed genetic and phenotypic data were obtained from all affected individuals. Olfactory function was evaluated by the Chinese Smell Identification Test and facial pattern was analyzed with Face2gene. Fifty ALMS patients were included in this study, aged from 0.3 to 21.7 years old. Sixty-one ALMS1 variants in 50 patients from 47 different families were confirmed, including 59 truncating and two exon deletions. Twenty-four of those variants were novel. We also summarized all previously reported cases of Chinese ALMS patients (69 patients) and identified specific and common variants within the Chinese population. Besides, the Chinese Smell Identification Test scores in patients was lower than that in controls (11.97 Vs. 10.44, p < .05), indicating olfactory identification impairments in ALMS patients. The facial pattern in ALMS patients was also distinctive from that of the controls (p < .05). In conclusion, this is the largest cohort of Chinese ALMS patients. We have successfully identified both specific and common variants in our cohort. We found a new phenotype of olfactory impairments in ALMS patients through a case-control study.

8.
BMC Med Genomics ; 14(1): 201, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34380476

ABSTRACT

BACKGROUND: Type II collagenopathies are a spectrum of diseases and skeletal dysplasia is one of the prominent features of collagenopathies. Molecular defects of the COL2A1 gene cause type II collagenopathies that is mainly an autosomal dominant disease, whereas some rare cases with autosomal recessive inheritance of mode have also been identified. CASE PRESENTATION: The patient was a 5-year-old male with a short neck, flat face, epiphyseal dysplasia, irregular vertebral endplates, and osteochondritis. Sequencing result indicated NM_001844.4: c.3662C > T; p. (Ser1221Phe) a novel missense variant, leading to a serine-to-phenylalanine substitution. Sanger sequencing confirmed the variant compared to his parents and brother. CONCLUSIONS: We identified a novel homozygous variant of the COL2A1 gene as the cause of type II collagenopathies in a Chinese male, enriching the spectrum of genotypes. This is the first case of type II collagenopathies inherited in an autosomal recessive manner in China and East Asia, and it is the first case that resulted from serine substitution in the world.


Subject(s)
Osteochondrodysplasias
9.
Gen Comp Endocrinol ; 250: 175-180, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28647319

ABSTRACT

Vitellogenin (vtg) synthesis, known as vitellogenesis, is one of most important processes in the ovarian development of oviparous animals. Recently, multiple insulin-like peptides (ILPs) have been reported in crustacean species due to the application of transcriptome sequencing. In this context, the present study reports that the addition of an exogenous ILP, bovine insulin, stimulates vtg (termed Sp-vtg) expression in hepatopancreatic explants from the mud crab, Scylla paramamosain, by in vitro experiments. Homologous genes of key factors in ILP signaling, Sp-PI3K, Sp-Akt, Sp-Rheb and Sp-TOR, have been isolated in S. paramamosain based on a transcriptome database. Further experiments reveal that the RNAi-mediated Sp-Akt gene knockdown and the inhibitors of Sp-PI3K and Sp-TOR block the stimulation of Sp-vtg expression by insulin. The combined results implicate the endogenous ILP and its corresponding signaling in the regulation of Sp-vtg synthesis in S. paramamosain.


Subject(s)
Brachyura/metabolism , Insulin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Vitellogenins/metabolism , Animals , Brachyura/drug effects , Cattle , DNA, Complementary/genetics , Female , Gene Knockdown Techniques , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Peptides/metabolism
10.
Mol Cell Endocrinol ; 416: 36-45, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26284495

ABSTRACT

Insulin-like peptides (ILPs) have been proved to exist extensively in invertebrates and play critical roles in regulating growth, metabolism and reproduction. ILP signaling system has been well defined in insects, with all key components homologous with vertebrate IGF signaling; however, counterparts of IGF binding proteins (IGFBPs) in vertebrates are not included in this system because of lacking sufficient researches in the related aspect. The present study firstly reports the identification of three kinds of invertebrate IGF binding (IB) domain-containing protein genes from the mud crab Scylla paramamosain. Gene expression analysis suggested that they might be closely involved in ovarian development, but with separate roles. Subsequent bioinformatics analysis and in vitro experiments indicated that they are likely to serve as endogenous ILP-specific binding proteins in invertebrates. More importantly, based on the current evidence we inferred that in invertebrate, ILP system might take the place of IGF system in vertebrate species.


Subject(s)
Arthropod Proteins/genetics , Brachyura/growth & development , Ovary/growth & development , Peptides/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary , Female , Gene Expression Profiling , Insulin/metabolism , Molecular Sequence Data , Protein Structure, Tertiary , Vitellogenesis/genetics
11.
Gen Comp Endocrinol ; 216: 24-32, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25921474

ABSTRACT

Insulin-like growth factor (IGF) signaling system holds a central position in regulating growth and metabolism in vertebrates. As critical components of this system, the IGF-binding proteins (IGFBPs) play important roles in regulating the biological activities of IGFs. Recently, the single IGF-binding domain protein (SIBD) was identified in invertebrates and its sequence was highly homologous with the N-terminal domain of IGFBP. In view of the possible role as counterparts of vertebrate IGFBPs, SIBDs have attracted the ever-increasing attention. This study reports the identification of a 1284bp SIBD gene (Sp-SIBD) from a member of commercially important family of Portunidae. The tissue distribution analysis showed that Sp-SIBD was mainly expressed in the nervous tissues and hepatopancreas. RNA in situ hybridization analysis showed that the positive signals were predominantly distributed in the secretory cells of the hepatopancreas. Subsequently, we examined the effects of various stresses, including hyperosmotic stress, hyperthermia, activated stress and fasting, on glucose levels in the hemolymph and Sp-SIBD expressions in the hepatopancreas. Interestingly, we found that Sp-SIBD expression was strongly up-regulated in response to these catabolic circumstances. Given the previous findings of insulin-like peptides (ILPs) in invertebrates, we speculate that invertebrate ILPs and SIBDs promise to serve as a pair of counterparts of IGFs and IGFBPs from vertebrate species respectively. In this context, the combined results suggested, by analogy with IGFBP 1 from vertebrates, for the first time that SIBD might play a key physiological role by sequestering ILPs to inhibit energy-expensive growth until conditions are more favorable.


Subject(s)
Arthropod Proteins/metabolism , Brachyura/metabolism , Hemolymph/metabolism , Hepatopancreas/metabolism , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin/metabolism , Stress, Physiological , Amino Acid Sequence , Animals , Arthropod Proteins/genetics , Base Sequence , Brachyura/genetics , Brachyura/growth & development , Cloning, Molecular , Energy Metabolism , Fasting/physiology , Fever , Glucose/metabolism , In Situ Hybridization , Insulin-Like Growth Factor Binding Proteins/genetics , Molecular Sequence Data , Osmotic Pressure , Phosphorylation , Sequence Homology, Amino Acid , Signal Transduction , Somatomedins/genetics , Somatomedins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...