Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inflammation ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38055120

ABSTRACT

Due to the accumulation of reactive oxygen species (ROS) and heightened activity of osteoclasts, postmenopausal osteoporosis could cause severe pathological bone destruction. Protein disulfide isomerase (PDI), an endoplasmic prototypic thiol isomerase, plays a central role in affecting cellular redox state. To test whether suppression of PDI could inhibit osteoclastogenesis through cellular redox regulation, bioinformatics network analysis was performed on the causative genes, followed by biological validation on the osteoclastogenesis in vitro and ovariectomy (OVX) mice model in vivo. The analysis identified PDI as one of gene targets for postmenopausal osteoporosis, which was positively expressed during osteoclastogenesis. Therefore, PDI expression inhibitor and chaperone activity inhibitor were used to verify the effects of PDI inhibitors on osteoclastogenesis. Results demonstrated that PDI inhibitors could reduce osteoclast number and inhibit resorption function via suppression on osteoclast marker genes. The mechanisms behind the scenes were the PDI inhibitors-caused intracellular ROS reduction via enhancement of the antioxidant system. Micro-CT and histological results indicated PDI inhibitors could effectively alleviate or even prevent bone loss in OVX mice. In conclusion, our findings unveiled the suppressive effects of PDI inhibitors on osteoclastogenesis by reducing intracellular ROS, providing new therapeutic options for postmenopausal osteoporosis.

2.
Oxid Med Cell Longev ; 2022: 4913534, 2022.
Article in English | MEDLINE | ID: mdl-35578727

ABSTRACT

Oxidative stress involves enormously in the development of chronic inflammatory bone disease, wherein the overproduction of reactive oxygen species (ROS) negatively impacts the bone remodeling via promoting osteoclastogenesis and inhibiting osteogenesis. Lacking effective therapies highlights the importance of finding novel treatments. Our previous study screened a novel bioactive peptide D7 and demonstrated it could enhance the cell behaviors and protect bone marrow mesenchymal stem cells (BMSCs). Since BMSCs are progenitor cells of osteoblast (OB), we therefore ask whether D7 could also protect against the progress of inflammatory osteolysis. To validate our hypothesis and elucidate the underlying mechanisms, we first performed network pharmacology-based analysis according to the molecule structure of D7, and then followed by pharmacological evaluation on D7 by in vitro lipopolysaccharide(LPS)-induced models. The result from network pharmacology identified 20 candidate targets of D7 for inflammatory osteolysis intervention. The further analysis of Gene Ontology (GO)/KEGG pathway enrichment suggested the therapeutic effect of D7 may primarily affect osteoclast (OC) differentiation and function during the inflammatory osteolysis. Through validating the real effects of D7 on OC and OB as postulated, results demonstrated suppressive effects of D7 on LPS-stimulated OC differentiation and resorption, via the inhibition on OC marker genes. Contrarily, by improving the expression of OB marker genes, D7 displayed promotive effects on OB differentiation and alleviated LPS-induced osteogenic damage. Further mechanism study revealed that D7 could reduce LPS-induced ROS formation and strengthen antioxidants expressions in both OC and OB precursors, ameliorating LPS-triggered redox imbalance in bone remodeling. Taken together, our findings unveiled therapeutic effects of D7 against LPS-induced inflammatory osteolysis through the suppression of oxidative stress and the restoration of the bone remodeling process, providing a new therapeutic candidate for chronic inflammatory bone diseases.


Subject(s)
Osteolysis , Animals , Bone Remodeling , Cell Differentiation , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Network Pharmacology , Osteoclasts/metabolism , Osteogenesis , Osteolysis/chemically induced , Osteolysis/drug therapy , Oxidative Stress , Peptides/metabolism , RANK Ligand/metabolism , Reactive Oxygen Species/metabolism
3.
Oxid Med Cell Longev ; 2022: 3182368, 2022.
Article in English | MEDLINE | ID: mdl-35281469

ABSTRACT

Osteonecrosis of the femoral head (ONFH) is a debilitating disease that is closely associated with the clinical application of high-dose glucocorticoids. Elevated oxidative stress contributes to the pathophysiological changes observed in ONFH. The lack of effective treatments besides surgical intervention highlights the importance of finding novel therapeutics. Our previous studies demonstrated that D7, a cyclic polypeptide, enhances the adhesion, expansion, and proliferation of bone marrow mesenchymal stem cells (BMSCs). Therefore, in this study, we investigated the therapeutic effects of D7 against ONFH in BMSCs and evaluated the underlying mechanisms. First, we screened for ONFH risk factors. Then, we applied D7 treatment to steroid-induced ONFH (SONFH) in an in vitro model produced by dexamethasone (DEX) to further elucidate the underlying mechanisms. We found negative correlations among oxidative stress marker expression, growth differentiation factor 15 (GDF15) levels, and ONFH. Furthermore, we demonstrated that DEX inhibited the proliferation and induced apoptosis of BMSCs by suppressing GDF15/AKT/mammalian target of rapamycin (mTOR) signaling. D7 alleviated DEX-induced BMSCs injury and restored the chondrogenic function of BMSCs by activating GDF15/AKT/mTOR signaling. In addition, DEX-induced excessive reactive oxygen species (ROS) generation was an upstream trigger of GDF15-mediated signaling, and D7 ameliorated this DEX-induced redox imbalance by restoring the expression of antioxidants, including superoxide dismutase (SOD) 1, SOD2, and catalase, via regulation of GDF15 expression. In conclusion, our findings revealed the potential therapeutic effects of D7 in SONFH and showed that this protective function may be mediated via inhibition of DEX-induced ROS and activation of GDF15/AKT/mTOR signaling, thereby providing insights into the potential applications of D7 in SONFH treatment.


Subject(s)
Bone Marrow/metabolism , Chondrogenesis/genetics , Femur Head/physiopathology , Growth Differentiation Factor 15/metabolism , Mesenchymal Stem Cells/metabolism , Osteonecrosis/genetics , Animals , Cell Differentiation , Humans , Osteonecrosis/pathology , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...