Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869376

ABSTRACT

Photothermal hydrogenation of carbon dioxide (CO2) into value-added products is an ideal solution for addressing the energy crisis and mitigating CO2 emissions. However, achieving high product selectivity remains challenging due to the simultaneous occurrence of numerous competing intermediate reactions during CO2 hydrogenation. We present a novel approach featuring isolated single-atom nickel (Ni) anchored onto indium oxide (In2O3) nanocrystals, serving as an effective photothermal catalyst for CO2 hydrogenation into methane (CH4) with a remarkable near-unity (∼99%) selectivity. Experiments and theoretical simulations have confirmed that isolated Ni sites on the In2O3 surface can effectively stabilize the intermediate products of the CO2 hydrogenation reaction and reduce the transition state energy barrier, thereby changing the reaction path to achieve ultrahigh selective methanation. This study provides comprehensive insights into the design of single-atom catalysts for the highly selective photothermal catalytic hydrogenation of CO2 to methane.

2.
Water Res ; 255: 121521, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38554634

ABSTRACT

In the photocatalytic degradation process, constructing a controllable composite oxidation system with radicals and nonradicals to meet the requirement for efficient and selective degradation of diverse pollutants is significant. Herein, a methylated and phosphorus-doped g-C3N4 (NPEA) can exhibit selective radical and nonradical species formation depending on the pH values. The NPEA can spontaneously switch the production of active species according to the pH value of the reaction system, exhibiting steady-state concentrations of ·O2- for 11.83 × 10-2 µmol L-1 s-1 (with 92.7 % selectivity) under alkaline conditions (pH = 11), and steady-state concentrations of 1O2 for 5.18 × 10-2 µmol L-1 s-1 (with 88.7 % selectivity) under acidic conditions (pH = 3). The NPEA exhibits stability and universality in the degradation of pollutants with rate constant for sulfamethazine (k = 0.261 min-1) and atrazine (k = 0.222 min-1). Moreover, the LC-MS and Fukui function demonstrated that the NPEA can tailor degradation pathways for pollutants, achieving selective degradation. This study offers a comprehensive insight into the mechanism of the photocatalytic oxidation system, elucidating the intricate interplay between pollutants and reactive oxygen species.

3.
Nat Commun ; 14(1): 5238, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37640726

ABSTRACT

Constructing photocatalytically active and stable covalent organic frameworks containing both oxidative and reductive reaction centers remain a challenge. In this study, benzotrithiophene-based covalent organic frameworks with spatially separated redox centers are rationally designed for the photocatalytic production of hydrogen peroxide from water and oxygen without sacrificial agents. The triazine-containing framework demonstrates high selectivity for H2O2 photogeneration, with a yield rate of 2111 µM h-1 (21.11 µmol h-1 and 1407 µmol g-1 h-1) and a solar-to-chemical conversion efficiency of 0.296%. Codirectional charge transfer and large energetic differences between linkages and linkers are verified in the double donor-acceptor structures of periodic frameworks. The active sites are mainly concentrated on the electron-acceptor fragments near the imine bond, which regulate the electron distribution of adjacent carbon atoms to optimally reduce the Gibbs free energy of O2* and OOH* intermediates during the formation of H2O2.

4.
Medicine (Baltimore) ; 102(10): e33198, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36897734

ABSTRACT

BACKGROUND: The global prevalence of type 2 diabetes mellitus (T2DM) is growing yearly. The efficacy of ertugliflozin (ERT), a recently licensed anti-diabetic drug, has been widely reported. However, additional evidence-based data is required to ensure its safety. In particular, convincing evidence on the effects of ERT on renal function and cardiovascular outcomes is needed. METHODS: We searched PubMed, Cochrane Library, Embase, and Web of Science for randomized placebo-controlled trials of ERT for T2DM published up to August 11, 2022. Cardiovascular events here mainly refer to acute myocardial infarction and angina pectoris (AP) (including stable AP and unstable AP). The estimated glomerular filtration rate (eGFR) was used to measure renal function. The pooled results are risk ratios (RRs) and 95% confidence intervals (CIs). Two participants worked independently to extract data. RESULTS: We searched 1516 documents and filtered the titles, abstracts, and full text, 45 papers were left. Seven trials met the inclusion criteria and were ultimately included in the meta-analysis. The meta-analysis found that ERT reduced eGFR by 0.60 mL·min-1·1.733 m-2 (95% CI: -1.02--0.17, P = .006) in patients with T2DM when used for no more than 52 weeks and these differences were statistically significant. Compared with placebo, ERT did not increase the risk of acute myocardial infarction (RR 1.00, 95% CI: 0.83-1.20, P = .333) and AP (RR 0.85, 95% CI: 0.69-1.05, P = .497). However, the fact that these differences were not statistically significant. CONCLUSION: This meta-analysis shows that ERT reduces eGFR over time in people with T2DM but is safe in the incidence of specific cardiovascular events.


Subject(s)
Diabetes Mellitus, Type 2 , Myocardial Infarction , Humans , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Myocardial Infarction/drug therapy , Kidney/physiology
5.
Small ; 19(18): e2207636, 2023 May.
Article in English | MEDLINE | ID: mdl-36772900

ABSTRACT

Herein, a twisty C-TiO2 /PCN (CNT) Step-scheme (S-scheme) heterojunction is fabricated and applied to degrade ciprofloxacin (CIP) with the assistance of ultrasonic vibration and visible light irradiation. The nitrogen-rich twisty polymeric carbon nitride (PCN) can not only induce a non-centrosymmetric structure with enhanced polarity for a better piezoelectric effect but also provide abundant lone pair electrons to promote n→π* transition during photocatalysis. Its hybridization with C-TiO2 particles can construct S-scheme heterojunction in CNT. During the piezo-photocatalysis, the strain-induced polarization electric field in the heterojunction can regulate the electron migration between the two components, resulting in a more effective CIP degradation. With the synergistic effect of ultrasonic vibration and visible light irradiation, the reaction rate constant of CIP degradation by CNT increases to 0.0517 min-1 , which is 1.86 times that of photocatalysis and 6.46 times that of ultrasound. This system exhibits a stable CIP decomposition efficiency under the interference of various environmental factors. In addition, the in-depth investigation found that three pathways and 12 major intermediates with reduced toxicity are produced after the reaction. Hopefully, the construction of this twisty CNT S-scheme heterojunction with enhanced piezo-photocatalytic effect offers inspiration for the design of environmentally functional materials.

6.
J Hazard Mater ; 441: 129845, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36067556

ABSTRACT

The abuse of pesticides and antibiotics and their harm to the environment are the disadvantages of modern agriculture and breeding industry. g-C3N4 has shown great potential in photocatalytic water pollution purification under visible light irradiation, however, the conventional g-C3N4 suffers from the disadvantage of limited optical absorption and serious charge recombination, resulting in inefficient light energy conversion and pollutant degradation. This study provides a strategy of combining defect engineering with a built-in electric field to prepare homojunction a photocatalyst with high optical absorption rate and charge separation efficiency. Experiments and DFT simulation revealed the mechanism of significant improvement in the photocatalytic performance of the prepared catalyst, and proposed the pollutant degradation pathway. In addition, the photocatalytic effects of the prepared catalysts on different natural water bodies, natural light, and various water conditions were investigated, revealing the applicability of the catalysts in the purification of pollutants in various water environments.


Subject(s)
Atrazine , Environmental Pollutants , Graphite , Pesticides , Anti-Bacterial Agents , Light , Tetracycline , Water
7.
Biosens Bioelectron ; 220: 114817, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36334366

ABSTRACT

A portable three-dimensional (3D) printed bionic sensing device with enhanced photoelectric response was fabricated for sensitive detection of Bisphenol A (BPA). The proposed sensor is operated upon by using a highly reactive dual-electrode system to generate electrical output and provide the sensing signal under photoirradiation, without an external power source. The fern-shaped nitrogen doped BiVO4 photoanode with enriched oxygen vacancies (Ov) bismuth vanadate (N/Ov/BiVO4) photoanode was first synthesized and applied to construct a bionic sensing device. Density functional theoretical (DFT) calculation shows that the synergistic of nitrogen doping and Ov on the surface of photoanode leads to the emergence of impurity levels in BiVO4's electronic structure, promoting the effective separation of photogenerated electron-hole pairs. Impressively, the unique fern-shaped bionic structure enhances the mass transfer efficiency of the sensing system and provides abundant binding sites of aptamer, realizing signal amplification. Moreover, a portable sensing device for automatic sample injection and detection is developed by integrating the detection system into a micromodel based on micro-nano 3D printing technology. Benefit from this ingenious design, the proposed bionic aptasensor displayed excellent electricity output and achieved high sensitivity and selectivity of BPA detection with a low limit of detection (0.025 nM) and broad linear range from 0.1 nM to 100 µM, paving a new way for the development of portable and on-site sensing devices.


Subject(s)
Biosensing Techniques , Ferns , Electrochemical Techniques/methods , Nitrogen/chemistry , Biosensing Techniques/methods , Oxygen , Bionics , Printing, Three-Dimensional
8.
World J Clin Cases ; 10(35): 12959-12970, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36569016

ABSTRACT

BACKGROUND: As a first-line treatment regimen for Helicobacter pylori (H. pylori) infection, antibiotic therapy is widely used worldwide. However, the question of increasing antibiotic resistance must be considered. Given this issue, we need to find ways to reduce drug resistance. This study examined all currently available first-line regimens and compared them with standard triple treatment through a network meta-analysis of randomized controlled trials (RCTs). AIM: To compare first-line treatment regimens for eradication of antibiotic-resistant H. pylori strains. METHODS: To compare the effectiveness of the first-line regimens for treating H. pylori infection, a Bayesian network meta-analysis was applied to process data extracted from RCTs. The plausible ranking for each regimen was assessed by the surface under the cumulative ranking curve (SUCRA). In addition, we conducted a relevant search by reference citation analysis. RESULTS: Twenty-five RCTs involving 12029 participants [including 1602 infected with clarithromycin (CAM)-resistant strains and 1716 infected with metronidazole (MNZ)-resistant strains] were included, in which a total of seven regimens were used for H. pylori eradication. The results showed that dual therapy containing a high-dose proton pump inhibitor (HDDT) [odds ratio (OR): 4.20, 95% confidence interval (CI): 2.29-8.13] was superior to other therapies for all patients, including those with CAM/MNZ-resistant H. pylori infection. In the comparative effectiveness ranking, for CAM-resistant H. pylori, HDDT (OR: 96.80, 95%CI: 22.46-521.9) had the best results, whereas standard triple therapy ranked last (SUCRA: 98.7% vs 0.3%). In the subgroup of high cure rates (≥ 90%), HDDT was also generally better than other therapies. CONCLUSION: For the eradication of CAM- and MNZ-resistant H. pylori strains, HDDT exhibited considerable advantages. The studies of CAM-resistant H. pylori were based on small samples due to a lack of antibiotic sensitivity tests in many RCTs, but the results showed that all patients, including those with CAM-resistant H. pylori infection, had a concordant trend. Overall, HDDT may be a reference for RCTs and other studies of H. pylori eradication.

9.
Adv Mater ; 34(23): e2200180, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35262973

ABSTRACT

2D materials show many particular properties, such as high surface-to-volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge-transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D-material-based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy-conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions.

10.
Biosens Bioelectron ; 197: 113734, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34736113

ABSTRACT

The performance of photoelectrochemical (PEC) analysis system relies closely on the properties of the photoelectric electrodes. It is of great significance to integrate photoactive materials with flexible substrates to construct ultra-sensitive PEC sensors for practical application. This work reports a novel photoelectrode developed by immobilizing α-Fe2O3 nanoparticles (NPs)/defect-rich carbon nitride (d-C3N4), an excellent Z-scheme heterojunction photoelectric material, onto three-dimensional (3D) flexible carbon fiber textile. Specifically, 3D hierarchical structure of flexible carbon fiber textile provides larger specific surface area and higher mechanical strength than traditional electrodes, resulting in more reaction sites and faster reaction kinetics to achieve signal amplification. Simultaneously, α-Fe2O3/d-C3N4 Z-scheme heterojunction exhibits enhanced light absorption capability and high redox ability, thus dramatically improving the PEC performance. This photoelectrode was used to construct a flexible PEC aptasensor for ultrasensitive detection of penbritin, demonstrating excellent performance in terms of wide linear range (0.5 pM-50 nM), low detection limit (0.0125 pM) and high stability. The design principle is applicable to the manufacture of other photoelectric sensing systems, which provides an avenue for the development of portable environmental analysis and field diagnostics equipment.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Ampicillin , Electrochemical Techniques , Electrodes , Limit of Detection
11.
J Hazard Mater ; 403: 123610, 2021 02 05.
Article in English | MEDLINE | ID: mdl-32829226

ABSTRACT

Low-cost biochar adsorbent owning great potential for environmental remediation faces a bottleneck in application for its unsatisfied adsorption performance. Compared to the efforts on increasing adsorption capacity, improving adsorption speed which is important for treatment efficiency is often neglected. Herein, a hierarchical porous biochar (HPB) derived from shrimp shell was prepared and exhibited good adsorption capacity (Qm>300 mg/g) and fast adsorptive equilibrium (≤10 min) towards three typical aromatic organics, whose adsorption universality was further proved by two-way ANOVA analysis. Whereafter, model analysis demonstrated that, the adsorptive forms (mono- and multi-layers) on HPB depended on whether the contaminant is charged. Compared to the benzene-ring site of organics, the charged site contributed 5.13 times to adsorption promotion in monolayer but -0.49 times in inhibition for multilayers forms. Simultaneously, functional group sites contributed relatively weak (0.023 to 0.342 times only). Following structural control revealed that, hierarchical pore structure of HPB was the key for the fast adsorption speed, and highly graphitic structure was important for the high adsorption capacity. This study aims to provide an advanced biochar adsorbent, not only in adsorption capacity but also in adsorptive speed, and reveal the relationship between the structure and adsorption performance of biochar.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Adsorption , Charcoal , Kinetics , Porosity , Water Pollutants, Chemical/analysis
12.
J Hazard Mater ; 401: 123355, 2021 01 05.
Article in English | MEDLINE | ID: mdl-32659580

ABSTRACT

A highly reactive hollow tubular g-C3N4 isotype heterojunction (SCN-CN) was designed to enhance visible light absorption and manipulate the directed transfer of electrons and holes. The results of UV-vis DRS, XPS valence band and DFT theoretical calculations indicated S doping increases the visible-light absorption capacity and changed the ba nd gap structure of g-C3N4 (CN), resulting in the transfer of electrons from the CN to the SCN and holes from the SCN to the CN under visible light. In addition, the tubular structure of the SCN-CN facilitated the transfer of electrons in the longitudinal direction, which reduced charge carrier recombination. Furthermore, the optical properties, electronic structure, and electron transfer of SCN-CN were also studied by experiments and theoretical calculations. The antibiotic tetracycline hydrochloride (TCH) and dye Rhodamine B (RHB) were subjected to evaluate the photocatalytic performance of SCN-CN. The scavenger tests and ESR data showed that the h+, ·O2- and ·OH worked together in the photocatalytic process. Moreover, the photocatalytic degradation pathway was analyzed by LC-MS. This study synthesized a hollow tubular CN isotype heterojunction with high visible-light photocatalytic performance and provided a theoretical basis for CN isotype heterojunction.

13.
Sci Total Environ ; 736: 139629, 2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32474279

ABSTRACT

Pollution of Sb(III) in water has caused great concern in recent years. Nanoscale zero-valent iron (nZVI) can detoxify Sb(III) polluted water, but the rapid passivation and low adsorption capacity limit its practical application. Hence, this study provides a new and efficient nanotechnology to remove Sb(III) using the sulfidated nanoscale zero-valent iron (S-nZVI). The S-nZVI exhibits higher Sb(III)-removal efficiency than pristine nZVI under both aerobic and anoxic conditions. The adsorption capacity of Sb(III) by optimized S-nZVI (465.1 mg/g) is 6 times as high as that of the pristine nZVI (83.3 mg/g) under aerobic conditions. The results indicate that Sb(III) and Sb(V) can be immobilized on the surface of S-nZVI by forming Fe-S-Sb precipitates. Moreover, characterization results demonstrate that the existence of S2- can not only activate H2O2 to produce hydroxyl radical, but also accelerate the cycle of Fe3+/Fe2+ to improve the efficiency of Fenton reaction. Therefore, S-nZVI can produce more hydroxyl radicals to oxidize Sb (III) to Sb (V) and results in 2.3-fold higher oxidation rate of Sb(III) compared to pristine nZVI. The formed FeS layer on the S-nZVI surface can also improve the release ability of Fe2+ and accelerate the formation of nZVI corrosion products. S-nZVI thus holds great potential to be applied in antimony removal.

14.
Biosens Bioelectron ; 164: 112328, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32553353

ABSTRACT

Quantum-sized cerium dioxide (CeO2) show high catalytic capability as well as strong light absorption ability owing to its redox couple Ce4+/Ce3+ and abundant oxygen vacancies, which making it a potential material for designing superior photoelectrochemical (PEC) sensors. However, it has scarcely been applied in the field of PEC sensing, because its wide band gap and aggregation effect can restrict the photoelectric conversion efficiency. Herein, we address these two obstacles by coupling CeO2 quantum dots (QDs) with graphitic carbon nitride (g-CN) and Au nanoparticles (NPs). The electron transfer path in this proposed heterojunction was proved by density functional theory (DFT) calculation for the first time, which provided theoretical support for the detection of MC-LR. The as-obtained PEC aptasensor exhibited excellent analytical performance with a wide liner response of 0.05-105 pM, and the detection limit was 0.01 pM. By designing appropriate sensing system and specific recognition mechanism, this work may pave a unique avenue for constructing ultrasensitive and selective analysis of MC-LR in complex environment without any external electric source.


Subject(s)
Biosensing Techniques , Marine Toxins , Metal Nanoparticles , Microcystins , Density Functional Theory , Electrochemical Techniques , Gold , Limit of Detection , Marine Toxins/analysis , Microcystins/analysis
15.
Water Res ; 175: 115673, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32171097

ABSTRACT

Due to the increase of emerging contaminants in water, how to use new treatment technology to make up for the defects of traditional wastewater treatment method has become one of the research hotspots at present. Intimate coupling of photocatalysis and biodegradation (ICPB) as a novel wastewater treatment method, which combines the advantages of biological treatment and photocatalytic reactions, has shown a great potential as a low-cost, environmental friendly and sustainable treatment technology. The system mainly consists of photocatalytic materials, porous carriers and biofilm. The key principle of ICPB is to transform bio-recalcitrant pollutants into biodegradable products by photocatalysis on the surface of porous carriers. The biodegradable products were mineralized simultaneously through the biofilm inside the carriers. Because of the protection of the carriers, the microorganism can remain active even under the UV-light, the mechanical force of water flow or the attack of free radicals. ICPB breaks the traditional concept that photocatalytic reaction and biodegradation must be separated in different reactors, improves the purification capacity of sewage and saves the cost. This review summarizes the recent advances of ICPB photocatalysts, carriers and biofilm being applied, and focuses on the mechanisms and reactor configurations which is particularly novel. Furthermore, the possible ongoing researches on ICPB are also put forward. This review will provide a valuable insight into the design and application of ICPB in environment and energy field.


Subject(s)
Titanium , Wastewater , Biodegradation, Environmental , Biofilms , Sewage
16.
Biosens Bioelectron ; 142: 111546, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31387026

ABSTRACT

This work presents a novel hexagonal boron nitride (h-BN) based self-powered photoelectrochemical (PEC) aptasensor for ultrasensitive detection of diazinon (DZN) with excellent photoelectric conversion efficiency. It was the first time that h-BN based materials were applied to PEC aptasensor, in which the construction of Z-scheme heterojunction of h-BN and graphitic carbon nitride (CN) via doping sulfur into h-BN was innovatively proposed. Meanwhile, Au nanoparticles (AuNPs) were utilized for the surface plasmon resonance (SPR) effect and the formation of new recombination centers. The charge transfer mechanism was expounded and verified by the electron spin resonance (ESR) spin-trap technique. The proposed PEC aptasensor for determination of DZN exhibited a wide linear range from 0.01 to 10000 nM and a low detection limit of 6.8 pM with superb selectivity and remarkable stability. Moreover, the constructed PEC aptasensor performed well with excellent recoveries in three different real samples. This work illustrated that PEC aptasensor is a promising alternative to conventional analytical technologies for the detection of DZN and other organophosphorus (OP) pesticides. The designing ideas of the proposed h-BN based material can provide a foothold for the innovative construction of photoactive materials for PEC bioanalysis.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Boron Compounds/chemistry , Diazinon/analysis , Pesticides/analysis , Electrochemical Techniques/methods , Environmental Pollutants/analysis , Gold/chemistry , Graphite/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Models, Molecular , Nitrogen Compounds/chemistry
17.
Nanoscale ; 11(25): 12198-12209, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31199416

ABSTRACT

Based on the unique photoelectrochemical properties of a CoO/Au/g-C3N4 Z-scheme heterojunction, a self-powered photoelectrochemical (PEC) aptasensor was constructed for the detection of microcystin-leucine arginine (MC-LR). Z-scheme heterojunctions can promote the separation of a photo-induced electron-hole pair, and the surface plasmonic resonance (SPR) of Au nanoparticles can significantly enhance the adsorption of visible light. Importantly, MC-LR molecules were captured by aptamers initially immobilized on the modified electrode due to their high affinity, and then oxidized by the photogenerated holes, which caused an amplified photocurrent signal, allowing the quantitative analysis of MC-LR by measuring the photocurrent intensity change. This PEC MC-LR aptasensor showed high sensitivity and selectivity within a wide linear response range from 0.1 pM to 10 nM and a detection limit of 0.01 pM. The application of this sensor in the analysis of lake water samples provided accurate results with a relative standard deviation (RSD) of 2.6%-4.2%.


Subject(s)
Copper/chemistry , Electrochemical Techniques , Gold/chemistry , Light , Microcystins/chemistry , Photochemical Processes
18.
J Colloid Interface Sci ; 539: 654-664, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30639983

ABSTRACT

A novel ultrathin Bi2WO6 nanosheets loaded g-C3N4 quantum dots (CNQDs/BWO) photocatalyst was successfully fabricated, and used to catalyze two representative organic pollutants, rhodamine B (RhB) and tetracycline (TC) under wide spectrum light irradiation. The degradation experiments showed that CNQDs/BWO exhibited enhanced photocatalytic activities towards degradation of organic pollutants. Under visible light irradiation, the 5% CNQDs/BWO exhibited the best degradation efficiency with 87% and 92.51% removal of TC and RhB within 60 min, respectively. And under near-infrared (NIR) light, the 5% CNQDs/BWO still showed the best performance, its degradation efficiency to TC were ∼2 times than pure BWO. The upconversion behaviors of CNQDs might contribute to the enhanced photocatalysis. According to similar degradation trend, it is inferred that the catalytic mechanism in NIR light is consistent with that in visible light. The enhanced photocatalytic activity of CNQDs/BWO under wide spectrum light irradiation can be ascribed to a Z-scheme mechanism based on the calculated the lowest unoccupied molecular orbital (LUMO) of CNQDs and CB position of BWO, the free radical quenching experiment, and ESR characterization results. The composites have prominent light absorption, high stability and excellent photocatalysis efficiency, which would be used as a promising strategy for organic pollutants degradation.

19.
J Colloid Interface Sci ; 509: 219-234, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28915480

ABSTRACT

To realize the sustainable employment of solar energy in contaminant degradation and environmental recovery, design and development of an efficient photocatalyst is urgently needed. Herein, a novel direct Z-scheme composite photocatalysts consist of phosphorous-doped ultrathin g-C3N4 nanosheets (PCNS) and bismuth vanadate (BiVO4) are developed via a one-pot impregnated precipitation method. The as-prepared hybrid nanocomposite was utilized for the degradation tetracycline (TC) under visible light irradiation. Among the composites with various PCNS/BiVO4 ratios, the prepared PCNS/BVO-400 photocatalyst presents the best performance, showing a TC (10mg/L) removal efficiency of 96.95% within 60min, more than double that of pristine BiVO4 (41.45%) and higher than that of pure PCNS (71.78%) under the same conditions. The effects of initial TC concentration, catalyst dosage, pH value and different water sources have been studied in detail. The improved photocatalytic performance of the as-prepared PCNS/BiVO4 nanocomposites could be attributed to the promoted separation efficiency of the photogenerated electrons and the enhanced charge carrier lifetime (1.65ns) owing to the synergistic effect between the PCNS and BiVO4. The degradation intermediates and decomposition pathway of TC were also analyzed and proposed. Additionally, radical trapping experiments and ESR measurement indicated that the photogenerated holes (h+), superoxide radical (O2-) and hydroxyl radical (OH) all participated in the TC removal procedure in the reaction system. The high performance of PCNS/BVO-400 in real wastewater indicated the potential of the prepared composite in practical application. This work provides an efficient and promising approach for the formation of high performance Z-scheme photocatalyst and study the possibility for real wastewater treatment.

20.
J Hazard Mater ; 344: 758-769, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29161670

ABSTRACT

To realize the full utilization of solar energy, the design of highly efficient photocatalyst with improved visible-near-infrared photocatalysis performance has attracted great attentions for environment pollutant removal. In this work, we rationally employed the surface plasmon resonance effect of metallic Ag in the phosphorus doped ultrathin g-C3N4 nanosheets (PCNS) and BiVO4 composites to construct a ternary Ag@PCNS/BiVO4 photocatalyst. It was applied for the photodegradation of ciprofloxacin (CIP), exhibiting 92.6% removal efficiency under visible light irradiation (λ>420nm) for 10mg/L CIP, and presenting enhanced photocatalytic ability than that of single component or binary nanocomposites under near-infrared light irradiation (λ>760nm). The improved photocatalytic activity of the prepared Ag@PCNS/BiVO4 nanocomposite can be attributed to the synergistic effect among the PCNS, BiVO4 and Ag, which not only improves the visible light response ability and hinders the recombination efficiency of the photogenerated electrons and holes, but also retains the strong the redox ability of the photogenerated charges. According to the trapping experiment and ESR measurements results, OH, h+ and O2- all participated in the photocatalytic degradation process. Considering the SPR effect of metallic Ag and the established local electric field around the interfaces, a dual Z-scheme electrons transfer mechanism was proposed.


Subject(s)
Anti-Bacterial Agents/chemistry , Ciprofloxacin/chemistry , Light , Nanocomposites/chemistry , Nanocomposites/radiation effects , Water Pollutants, Chemical/chemistry , Bismuth/chemistry , Catalysis , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanocomposites/ultrastructure , Nitriles/chemistry , Nitriles/radiation effects , Phosphorus/chemistry , Phosphorus/radiation effects , Photolysis , Silver/chemistry , Silver/radiation effects , Surface Plasmon Resonance , Vanadates/chemistry , Vanadates/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...