Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Obes Metab ; 26(6): 2257-2266, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38497233

ABSTRACT

AIM: Non-alcoholic fatty liver is the most common cause of chronic liver disease. GPR40 is a potential therapeutic target for energy metabolic disorders. GPR40 is a potential therapeutic target for energy metabolic disorders. SZZ15-11 is a newly synthesized GPR40 agonist. In this study, we estimate the potency of SZZ15-11 in fatty liver treatment. METHODS: In vivo, diet-induced obese (DIO) mice received SZZ15-11 (50 mg/kg) and TAK875 (50 mg/kg) for 6 weeks. Blood glucose and lipid, hepatocyte lipid and liver morphology were analysed. In vitro, HepG2 cells and GPR40-knockdown HepG2 cells induced with 0.3 mM oleic acid were treated with SZZ15-11. Triglyceride and total cholesterol of cells were measured. At the same time, the AMPK pathway regulating triglycerides and cholesterol esters synthesis was investigated via western blot and quantitative polymerase chain reaction in both liver tissue and HepG2 cells. RESULTS: SZZ15-11 was found to not only attenuate hyperglycaemia and hyperlipidaemia but also ameliorate fatty liver disease in DIO mice. At the same time, SZZ15-11 decreased triglyceride and total cholesterol content in HepG2 cells. Whether examined in the liver of DIO mice or in HepG2 cells, SZZ15-11 upregulated AMPKα phosphorylation and then downregulated the expression of the cholesterogenic key enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase and inhibited acetyl-CoA carboxylase activity. Furthermore, SZZ15-11 promotes AMPK activity via [cAMP]i accumulation. CONCLUSION: This study confirmed that SZZ15-11, a novel GPR40 agonist, improves hyperlipidaemia and fatty liver, partially via Gs signalling and the AMPK pathway in hepatocytes.


Subject(s)
AMP-Activated Protein Kinases , Homeostasis , Non-alcoholic Fatty Liver Disease , Obesity , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Humans , Male , Mice , AMP-Activated Protein Kinases/metabolism , Diet, High-Fat , Hep G2 Cells , Hepatocytes/metabolism , Hepatocytes/drug effects , Homeostasis/drug effects , Liver/metabolism , Liver/drug effects , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Obesity/drug therapy , Obesity/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Triglycerides/metabolism
2.
Front Med (Lausanne) ; 10: 1164242, 2023.
Article in English | MEDLINE | ID: mdl-37359004

ABSTRACT

Background: Morus alba L. (Sangzhi) alkaloid (SZ-A) is a new antidiabetic drug approved by the China National Medical Products Administration in 2020. Diabetic nephropathy (DN) is a common diabetic complication and an important cause of morbidity and mortality in patients with diabetes. The effects of SZ-A on DN remain unknown. Purpose: This study evaluated the effects of SZ-A on DN in Zucker diabetic fatty (ZDF) rats and explored the underlying mechanisms based on nitrosative stress, inflammation, and fibrosis. Methods: Diabetic ZDF rats were orally administered 100 and 200 mg/kg of SZ-A once daily for 9 weeks. The glucose metabolism and kidney function were assayed. The pathological injury and fibrosis of the kidneys were separately evaluated using hematoxylin and eosin staining and Masson's staining. The oxidative and nitrosative stress and inflammation were assayed by determining the levels of related indices in the blood and kidneys and quantifying the related gene and protein expression. The expression of transforming growth factor ß1 (TGFß1) gene and protein were assayed by quantitative real-time PCR and immunohistochemistry, respectively. The renal transcriptomics was analyzed using RNA sequencing. Results: Repeated treatment with SZ-A significantly improved glucose metabolism, dose-dependently decreased the levels of blood urea nitrogen, urinary albumin, and ß2-microglobulin, and evidently relieved the renal injury in diabetic ZDF rats. As for the mechanisms, SZ-A remarkably ameliorated systemic nitrosative stress through lowering the levels of blood inducible nitric oxide synthase and nitric oxide, and significantly relieved systemic and renal inflammation by reducing the levels of blood interleukin-1ß and monocyte chemoattractant protein-1 (MCP-1) and decreasing the levels of renal C-reactive protein content and expression of tumor necrosis factor-α in the kidneys. SZ-A also improved renal fibrosis by lowering the expression of TGFß1 in the kidneys. Additionally, SZ-A significantly lowered the expression of stimulator of chondrogenesis 1 in the kidneys. Conclusion: Repeated treatments with SZ-A significantly ameliorates DN by regulating systemic nitrosative stress, renal inflammation, and renal fibrosis partially through inhibition of the cytokine-NO and TGF-ß1 signaling in ZDF rats, providing evidence for the additional application of SZ-A in clinical use for the treatment of DN.

3.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36555580

ABSTRACT

Voglibose is an α-glycosidase inhibitor that improves postprandial hyperglycemia and increases glucagon-like peptide-1 (GLP-1) secretion in patients with type 2 diabetes. Recently, there has been increasing interest in the anti-inflammatory effects of voglibose on the intestine, but the underlying mechanism is not clear. This study evaluated the effects and mechanisms of voglibose on glycemic control and intestinal inflammation. Type 2 diabetic KKAy mice were treated with voglibose (1 mg/kg) by oral gavage once daily. After 8 weeks, glucose metabolism, levels of short-chain fatty acids (SCFAs), systematic inflammatory factors, intestinal integrity and inflammation were evaluated using hematoxylin and eosin staining, immunohistochemistry, immunofluorescence and Western blot analysis. Voglibose ameliorated glucose metabolism by enhancing basal- and glucose-dependent GLP-1 secretion. Several beneficial SCFAs, such as acetic acid and propionic acid, were increased by voglibose in the fecal sample. Additionally, voglibose notably decreased the proportion of pro-inflammatory macrophages and the expression of nuclear factor kappa B but increased the expression of tight junction proteins in the ileum, thus markedly improving intestinal inflammatory damage and reducing the systematic inflammatory factors. Ileal genomics and protein validation suggested that voglibose attenuated inositol-requiring protein 1α-X-box binding protein 1-mediated endoplasmic reticulum stress (ERS). Together, these results showed that voglibose enhanced the secretion of GLP-1, which contributed to the glycemic control in KKAy mice at least in part by regulating intestinal inflammation and the expression of ERS factors.


Subject(s)
Diabetes Mellitus, Type 2 , Mice , Animals , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/metabolism , Inositol/pharmacology , Ileum/metabolism , Glucose
SELECTION OF CITATIONS
SEARCH DETAIL
...